(5) BERNSTEIN

Complete Range
Switch Systems and safety technology
(5) BERNSTEIN

BERNSTEIN AG A Success Story

Safety for man and machine

BERNSTEIN AG ranks among the world's leading providers of industrial safety technology. With our comprehensive range of switches, sensors, enclosures, suspension systems and other components for industrial applications, we offer our customers effective and versatile solutions.

In-depth market knowledge, the close proximity to end users as well as years of experience in mechanical engineering and electronics are reflected down to the last detail in our products.

By conforming to international safety guidelines, our products perfectly integrate in individual solutions. Our focus is complete commitment to safety for man, machine and industrial processes.

Our expertise for your safety

With sound application expertise we support our customers from all branches of industry in the planning and implementation of systems designed to meet stringent safety requirements. In addition to classic plant and machine construction, we look after customers in the lift construction, automotive, agriculture, conveyor construction, automation engineering, wood-working, renewable energy, AS-Interface and EX.

Our knowledge is your success

GERMANY

Porta Westfalica
BERNSTEIN BUSINESS CENTER

GERMANY
Hille-Hartum

Our philosophy

Customer Satisfaction is our number one priority. For us, Quality is more than making a good product, it's about designing them to perfectly match ALL of your needs.

Customized Solutions are fully integrated into our business and form part of our everyday working life. Employees are treated as our greatest asset as they are responsible for the quality and success of our products. All BERNSTEIN TEAM members are trained and educated to the highest possible standard so they can deliver "Best in Class" Service and Support. The BERNSTEIN TEAM will support you both personally and professionally, working together we will provide you with the best Safe Solution - for any size of project.

EUROPE
Budapest (Hungary)
BERNSTEIN Kft.

ASIA
Taicang (China)
BERNSTEIN Safe Solutions

Future-proof solutions

Our objective is to actively influence technical innovation and modern application solutions. BERNSTEIN has therefore always been at the centre of defining trends in technology. With an unwavering commitment to the future we will continue providing the best possible answers in terms of technology, ecology and economic efficiency.

That is our definition of progress!

BERNSTEIN AG The Product Lines

Switch Systems

Switch systems Economy meets safety

BERNSTEIN electromechanical switches offer a convincing price / performance ratio and impress with their extreme reliability for many different operating voltages. The range extends from limit switches, encapsulated in insulating material or metal, through foot switches to safety switching devices. The AS-i compatible products save time and material in installation and provide cost advantages in operation. The comprehensive range of designs and sizes, the possible switching functions and the choice of actuators make virtually any application reality.

Sensor Systems

Sensor systems Compact intelligence

The extremely fast and exceptionally precise BERNSTEIN sensors operate without interference and wear in all applications. The tried-and-tested reliability and the compact dimensions are greatly appreciated in all branches of industry. Matching the specific application, in addition to ultrasonic sensors and level switches, customers can choose from a wide range of inductive, capacitive, magnetic or optical sensors. Alongside the complete standard range of sensors, we also offer comprehensive development and design for individual solutions.

Enclosure Systems

Enclosure systems Function and design

With its long tradition in manufacturing enclosures, BERNSTEIN combines superior enclosure technology, designed for encapsulating a diverse range of applications, with ultramodern and variable suspension systems. An extensive range of aluminium and plastic terminal boxes as well as the wiring and circuitry in standard and control enclosures conforming to specific customer requirements round off the product portfolio. Our enclosures conform to standards used in medical technology, industry as well as food and EX applications.

Product Line

Switch Systems

Switch systems - Economy meets safety

BERNSTEIN AG is an established manufacturer of high quality electromechanical low voltage switching devices. Our products are used in the most diverse range of applications, ranging from lift construction through wood-working and packaging machines through to machine tools.

In addition to functional reliability and high quality, BERNSTEIN switch systems also efficiently save time in terms of installation and maintenance.These advantages further underscore the benefits for the end product as they drastically reduce downtime for servicing and maintenance purposes. This is achieved through features such as the quick-connect head for time-saving installation at rope pull switches or the AS interface components which, in addition to shortening installation times, also reduce the number of hardware components and the space requirements in machines.

The switching system is selected based on the function (slow-action or snap-action contact) and the required floating contacts. The actuator is also selected corresponding to the type and direction of actuation. Thanks to the large number of possible combinations, the scope of application is virtually unlimited.

The applications in which limit switches are used have changed in line with increasing automation. While not too long ago limit switches were mainly used for monitoring position, today they often additionally assume a safety function.

Switches are an integral part of modern processes

The primary purpose of a switch is to convert mechanical movement into electrical signals that are processed in machine and process control systems. However, switches directly connected to bus systems are being used to an ever greater extent in modern applications where mechanical movement is converted into digital information.

Besides reducing costs, our AS interface switch components also offer advantages such as the diagnostic features and uncomplicated system expansion in process applications.

BERNSTEIN switches are configured by combining different types of enclosures, switch systems and actuators. Corresponding to the environmental and operating conditions, the switches are available in a metal or plastic enclosure.

Complementing our product range we offer attractive customer services:

- Assistance in assessing risk and configuring safety functions
- Preassembly of products with standard power supply lines or customised cables
- Supply of completely preassembled wiring harnesses
- Component supplied with M12 connector
- Customised adaptation of products

Safety Switches
for Hinged Protective
Equipment

Common Features of Electromechanical Switches

Switching systems

Switching elements lie at the heart of all electromechanical switching devices and must correspond to the respective application. Essentially there are two basic types of switching system that differ in terms of their mechanical design and consequently their scope of application:

- Slow-action contacts
- Snap-action contacts

Slow-action contacts

- On actuation, the normally-closed and normally-open contact functions correspond to the movement of the impact pin
- The approach speed controls the contact opening (closing) time
- Large distance / actuating travel between normally-closed and normallyopen contact function
- The switching points are identical in forward and reverse travel

Fig. 1 shows the contact force during the switching cycle of a slow-action contact.

Overlap

- The switching principle of snap-action contacts makes overlapping of the NC / NO contact function possible. The term overlap refers to the area, in which both the normally-closed contact as well as the normally-open contact are closed in connection with a changeover switch with delay.

Fig. 2 shows the contact force during the switching cycle of a slow-action contact with overlap.

Snap-action contact

- On actuation, the normally-closed contact function is immediately followed by the normally-open contact function
- In this configuration there is no overlap of the NC/NO contacts. The switch provides a distinct OR-function
- The changeover accuracy is not dependent on the approach speed
- Consistently effective suppression of DC arc
- Reliable contact-making also for extremely slow approach speeds
- The snap mechanism triggers the full opening width of the contact on reaching the changeover point
- Due to the force reversal in the mechanical system, a different switching point occurs in forward and reverse travel. The lag is referred to as hysteresis.

Fig. 3 shows the contact force during the switching cycle of a snap-action contact.
${ }^{1)}$ Changeover point in forward travel
${ }^{2)}$ Changeover point in reverse travel

Switching diagram

The switching diagram describes the function of the switching device in detail.

It combines the mechanical input variables that act on the contact system via the actuator with the electrical output variables. The user can deduct the following information from the switching diagram:

- Mechanical input variables (force, travel, torque, angle)
- Electrical contact-making in forward and reverse travel
- Terminal designation
- Point at which positive opening is achieved
- Type of contact system

Slow-action contact

Snap-action contact

Contact closed
\square Contact open

Contact designation

In accordance with DIN 50013 and DIN 50005 the terminal designations of the contact elements are always make up of two digits.

The contact rows are numbered consecutively with the allocating digit (1st digit) in actuation direction. Contacts of a switching element that belong together have the same allocating digit.

The second digit is the function digit that denotes the type of contact element.

1-2 Normally-closed contact
3-4 Normally-open contact
5-6 Normally-closed contact with delayed opening
7-8 Normally-open contact with delayed closing

Protection class

The protection class of an enclosed device denotes the degree of protection. The degree of protection includes the protection of persons against contactwith parts under voltage and the protection of equipment against the infiltration of foreign bodies and water. BERNSTEIN standard enclosures mainly correspond to protection classes IP65 and IP67. Higher protection ratings are also available for individual customer solutions. In accordance with DIN EN 60521 (IEC 529), the numerals used in the protection rating denote the following:

1st digit Degree of protection against contact and infiltration of foreign bodies

2nd digit Degree of protection against infiltration of water

Example IP65:

$6=\bullet$ Complete protection against contact with components under voltage or with internal moving parts

- Protection against dust infiltration
$5=$ - A water jet directed from all directions at the device must not have damaging effects
- Protection against hose water

Enclosures

Limit switches are supplied either in a plastic enclosure or a metal enclosure. Which material is to be selected for a specific application depends on the ambient conditions, the location as well as several other factors.

Plastic limit switches provide protective insulation and are resistant to many aggressive chemicals and liquids. The formation of condensation water in moist environments with extreme temperature fluctuations is significantly reduced on plastic enclosures.

In insulation-enclosed switches the switching elements are integrated directly in the plastic enclosure and are therefore not replaceable (complete switching devices).

Metal-enclosed limit switches are able to withstand high mechanical loads, they can also be used wherever hot metal chips and sparks occur and are resistant to many solvents and detergents. The switching elements in metal-enclosed switches are often integrated in the metal enclosure as modular built-in switches. The enclosure has a VDE-compliant connection for the PE conductor.

Designation

The designation of BERNSTEIN switching devices depends on:

- The enclosure designation of the switching device
- The switching function
- The type of actuator

Type code of position and safety switches

IN65	A2Z ${ }^{1)}$	AH	M12
Switch group	Switching system ${ }^{2 /}$	Actuator	Special features
- C2	- U1	See Pages	- M12 connection
- Ti2	- SU1	68-69	- Actuator turned
- 149	- A2		$90^{\circ}, 180^{\circ}, 270^{\circ}$
- IN62, IN65, 181	- SA2		- Special switching
- Bi2	- E2		forces
- ENK	- SE2		- Special temperature ranges
- GC	- UV1		Other special
- SN2			features on request
- ENM2			
- D			

Safety switches

The scope of application for limit switches has changed over time. Whereas limit switches were previously used for the purpose of detecting end positions, today they are increasingly assuming functions designed to protect persons and products in machine, equipment and plant construction.

The BERNSTEIN range of safety switches offers the right solution for the most diverse applications in many branches of industry. Particularly when it comes to safety, users appreciate the fact that they are able to procure all required safety switches and receive professional advice from one source.

The decisive factors governing the selection of safety equipment include the ambient conditions, installation situation and risk analysis.

A switching device that can be used for safety functions is identified by the standardised symbol conforming to EN 60947-5-1 Addendum K. The switches can, of course, also be used for pure position monitoring purposes.

Safety switches are divided into two categories, Type 1 and Type 2. The difference is in the actuating elements which are completely integrated in the enclosure in Type 1 and separated from the switching element in Type 2.

Type 1

Type 2
${ }^{1)}$ The letter Z suffix to the designation of the switching function denotes the mechanical positive opening action of the normally-closed contacts. In technical data sheets, the positive opening point is identified by the international symbol Θ.

[^0]
Common Features of Electromechanical Switches

Switching function example

NC = Normally-closed contact
NO = Normally-open contact
V = Overlap

U1Z

Slow-action contact, 1 NC, 1 NO

SA2Z
Snap-action contact, 2 NC

UV1Z
Slow-action contact, with overlapping contacts,
1 NC, 1 NO

U16Z

Slow-action contact, 1 NC, 2 NO

The actuating forces and travel distances are subject to tolerances. These tolerances are listed in Table 1.
In Type 1 and Type 2 position switches, the tolerances are independent of the switching system and switching function.

SU1Z

Snap-action contact, 1 NC, 1 NO

E2
Slow-action contact, 2 NO

U15Z
Slow-action contact, 2 NC, 1 NO

UV16Z

Slow-action contact, with overlapping contacts,
1 NC, 2 NO

A2Z
Slow-action contact, 2 NC

SE2
Snap-action contact, 2 NO

UV15Z
Slow-action contact,
with overlapping contacts,
2 NC, 1 NO

$\Theta=$ Mechanical positive opening action

The term positive opening action refers to contact separation as the direct result of defined movement of the switch actuator by means of non-sprung parts. All parts involved in contact separation must be form-fit connected. The positive opening distance describes the minimum travel distance from the start of actuation of the operating element up to the point where positive opening action of the opening contacts is completed.

DIN EN 60947-5-1 defines two types of positive opening action contacts with 4 connections and double break

Type Za

- Positively opening contacts not galvanically isolated

Type Zb

- Positively opening contacts galvanically isolated

Galvanic isolation describes the isolation of electrically conducted parts by insulating material or by air gaps.

In switching devices with several contact elements, galvanically isolated contact elements make it possible to switch voltages with different potential (e.g. normally-closed contact in safety circuit, normally-open contact for indicator).

In accordance with applicable health and safety requirements, protective devices (guards) must be mounted on machines, devices and systems that perform hazardous movements. Safety switches in the form of electromechanical switching devices are predominantly used for this purpose as they offer the following advantages:

- High degree of safety
- Non-susceptibility to interference
- Safety status easily checked on site
- Rational solutions

Form-fit, mechanical drives or coupling elements in the form of levers, rods, gearwheels etc. are necessary to ensure optimum operation of these safety components.

Switching devices that are used for safety functions must be identified with the symbol Θ internationally standardised in accordance with DIN EN 60947-5-1. In defining the class of switching devices, this symbol denotes two important properties that must be met for personal protection applications:

- Mechanical positive opening action
- Disruptive breakdown voltage > 2.5 kV

Disruptive breakdown voltage

In accordance with DIN EN 60947-5-1, the open contacts must be able to maintain a minimum surge voltage of 2.5 kV without disruptive breakdown

Standard actuator DIN EN 50047

Form A

Form B

Form C

Form E

Standard actuator DIN EN 50041

Form A

Form B

Form C

Form D

Content and significance of ISO 14119

ISO 14119 describes the requirements in selecting and installing safety switches and sensors (with and without interlock function).

ISO 14119 defines 4 different types of products

Type 1	Type 2	Type 3	Type 4
mechanical		contactless	
uncoded	coded	uncoded	coded
Position Switches (with Θ) IN62, IN65, 181 ENK ENM etc.	Interlocking devices	Magnetic switches (Hall and Reed) MAK	Magnetic switches MAK 42/52/53
Safety Hinge Switch	Interlocking devices with interlock function	Inductive Capacitive Optical KIN KCN OM	CSMS-A/R/RRS sensors RFID

In addition to the above, BERNSTEIN has a complete range of complimentary products all in accordance with ISO 14119.

ISO 14119 defines possible methods used to prevent tampering

- Avoidance of any accessibility to elements of the locking system
- Switch installed in an inaccessible position
- Barriers or shielding of the switch
- Installation of the switch in a concealed area
- Avoidance of disassembly or position modification of locking system elements by means of permanent fixings (for ex. welding, gluing, non-removable screws, riveting);
- Avoidance of any actuation of the locking system by readily accessible objects, by using coded actuators
Compared to the preceding standard, the following coding schemes of the actuators regarding, amongst other things, manipulation protection will be defined:
- coded actuators with low-level coding (with SK, SLK, MAK)
- coded actuator with medium-level coding
- coded actuator with high-level coding (CSMS)

In the field of locking systems with low-level coding, the existing products such as SLK, SLM, SK, MAK are still to be used in combination with the MÜZ.

- Avoidance of circumvention for ex. through plausibility tests by the control unit

Note on series connection of locking systems

The standard expressly indicates the possible error concealment (error masking) when mechanical contacts are connected in series. A series connection can lead to reduction of the performance level according to ISO 13849-1.
The use of electronic safety sensors such as the CSMS guarantees the highest performance level also in case of a series connection.
ISO 14119 provides support during the selection of the locking system and contains all relevant requirements related to the placement of locking systems.
For further information see among other things the DGUV information 203-079 "Selection and placement of locking systems".

Selection of an interlock function

According to ISO 14119, a locking system must be used in combination with an interlock function if the over-travel time for the entire system is longer than or the same as the period of time it takes for a person to reach the hazardous area.

C2

Recommended use

Ideal for safety applications and position monitoring in confined spaces.

Product advantages

- Miniature switch for safety applications
- Two-channel safety monitoring possible
- With captive snap-on cover
- Small hysteresis in snap action system

Design layout

- Slow-action and snap-action contacts
- Versions: 1 NC / 1NO, 2 NC, 2 NO
- All NC contacts with Θ in the circuit diagram are positively opening contacts
- Type: Zb (galvanically isolated changeover contact)

Mounting

- Also suitable for front mounting (depending on type)

- a) 2 round holes for M4 screws
- b) 2 Integrated nuts for front mounting for M3 screws (depending on type)

Installation advantages

- Snap-on cover can be released with screwdriver
- Cover opening range 180° (cover can also be detached from hinge)
- Cover protects switching element during installation
- Screw connections with self-lifting clamping plates
- Cover transparent for adjustment and visual inspection
- Easy-action cover lock (close and press)

Technical data

Electrical data		
Rated insulation voltage	U_{i} max.	240 V AC
Conventional thermal current	$\mathrm{I}_{\text {the }}$	10 A
Rated operating voltage	$\mathrm{U}_{\mathrm{e}} \mathrm{max}$.	240 V
Utilisation category	$\mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}}$	AC-15, U $\mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$
Short-circuit protection		Fuse $6 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$
Protection class		II, Insulated
Mechanical data		
Enclosure material	Therm	glass fibre-reinforced (UL 94-V0)
Ambient temperature	$-30^{\circ} \mathrm{C}$ to	
Mechanical service life	3×10^{6} s	ing cycles
B10d	6 Mio.	
Switching frequency	$\leq 100 / \mathrm{m}$	
Type of connection	Screw con	ctions
Conductor cross sections	Single-w Strande	$\begin{aligned} & .5-1.5 \mathrm{~mm}^{2} \text { or } \\ & \text { e with ferrule } 0.5-1.5 \mathrm{~mm}^{2} \end{aligned}$
Cable entry	Rectang	x 3.5 mm
Protection class	IP20 con	ing to EN 60529; DIN VDE 0470 T1
Standards		
VDE 0660 T100, DIN EN 60947-1, IEC 60947-1 VDE 0660 T200, DIN EN 60947-5-1, IEC 60947-5-1		

C2

- Also available with roller turned by 90°

K
R

6008816017
C2-E2 R

(4) 다

Replacement actuator: -

Special features / variants

(on request)
O.M.

(4) 단

Replacement actuator: -

Special features / variants

- Button actuator, for manual operation

C2

BISTABLE O.M.

Switching operation
Slow-action
Snap-action

1 NC / 1 NO contact
\square
2 NC contacts

2 NO contacts

1 NC / 1 NO contact

Overlapping

Approvals

Replacement actuator: -

Special features / variants

- Bistable characteristics, actuator must be returned to initial position by external actuation (pulling)
- Actuator length adjustable with M3 adjusting screw

Ti2

Recommended use

Ideal for safety applications and position monitoring in confined spaces with high protection class IP65.

Product advantages

- Compact IP65 switch for safety applications
- Optimised size while retaining tried-and-tested connection system
- Two-channel safety monitoring possible
- With captive snap-on cover
- 2 mm contact opening width of slow-action system conforming to EN 81-1 for lift construction
- Mall hysteresis in snap action system
- Actuator can be repositioned by $4 \times 90^{\circ}$

Options

- Available with M12 connector
- AS interface variants available
- Preassembled with customer-specific cables and connectors on request

Design layout

- Slow-action and snap-action contacts
- Versions: 1 NC / 1NO, 2 NC, 2 NO
- All NC contacts with Θ in the circuit diagram are positively opening contacts
- Type: Zb (galvanically isolated change-over contact)

Mounting

- Mounting dimensions conforming to DIN EN 50047
- 2 slots for adjustment with M4 screws (distance between centres 22 mm)
- Fixed positioning for safety applications with two M5 screws (distance between centres 23 mm)

Installation advantages

- Snap-on cover can be released with screwdriver
- Cover protects switching element during installation
- Screw connections with self-lifting clamping plates
- Cover transparent for adjustment and visual inspection
- Easy-action cover lock (close and press)

Technical data

Electrical data		
Rated insulation voltage	U_{i} max.	240 V AC
Conventional thermal current	$1{ }_{\text {the }}$	10 A
Rated operating voltage	U_{e} max.	240 V
Utilisation category	$\mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}}$	AC-15, $\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$; DC-13, $\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 0,27 \mathrm{~A}$
Short-circuit protection		Fuse $6 \mathrm{AgL} / \mathrm{gG}$
Protection class		II, Insulated
Mechanical data		
Enclosure material	Thermoplastic, glass fibre-reinforced (UL 94-V0)	
Ambient temperature	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	
Mechanical service life	3×10^{6} switching cycles	
B10d	6 Mio.	
Switching frequency	$\leq 100 / \mathrm{min}$.	
Type of connection	Screw connections	
Conductor cross sections	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$	
Cable entry	$1 \times \mathrm{M} 16 \times 1,5$	
Protection class	IP65 conforming to EN 60529; DIN VDE 0470 T1	
Standards		
VDE 0660 T100, DIN EN 609470660 T200, DIN EN 60947-5-1,	$\begin{aligned} & \text { O947-1VD } \\ & 47-5-1 \end{aligned}$	

W (Form B)

RiW (Form C)

Approvals

6088867012
TI2-SE2 RIW

(8)

Replacement actuator: -

Special features / variants

(on request)

- Available with increased switching force
- Available with different actuating directions
- Cannot be turned by user

HW (Form E)
AH (Form A)
AD

(14) (15)

Replacement actuator: 3918190681

Special features / variants

(on request)

- Available with different actuating directions
- With steel roller
- Various roller diameters

Special features / variants

 (on request)- Available with different actuating directions
- With steel roller
- Various roller diameters
- Cranked or straight lever
- Various lever lengths
- With roller over switch

Special features / variants

(on request)

- Available with different actuating directions
- With various actuator lengths
- Available with increased switching force

Ti2

Approvals

Replacement actuator: 3918360984

Special features / variants

(on request)

- Available with different actuating directions
- Various roller diameters
- Various lever lengths
- With roller over switch

149

Recommended use

With its slim design and full IP67 protection the I49 switches are simply ideal for position monitoring and end position shutdown in safety applications.

Product advantages

- Ultra-flat design
- Highly flexible deployment
- Reliability
- Simple and quick installation
- Two mounting levels
- Side and straight cable outlet
- With 1 m fixed cable
- High quality plastic enclosure
- Small hysteresis in snap action system
- Compact IP67 switch for safety applications

Options

- Various cable lengths available on request

Design layout

- Slow-action and snap-action contacts
- Versions: 1 NC / 1NO
- All NC contacts with Θ in the circuit diagram are positively opening contacts
- Type: Zb (galvanically isolated changeover contact)

Application examples

- Monitoring of safety gates, hatches or protective hoods
- Position monitoring of moving parts
- Object detection in conveying technology
- End position control of components
- Position monitoring on rolling doors
- Monitoring of sliding doors

Technical data

Electrical data		
Rated insulation voltage	U_{i} max.	400 V AC
Conventional thermal current	$I_{\text {the }}$	10 A
Rated operating voltage	$\mathrm{U}_{\mathrm{e}} \mathrm{max}$.	240 V
Utilisation category		AC-15; $24 \mathrm{~V} / 10 \mathrm{~A} ; 240 \mathrm{~V} / 3 \mathrm{~A}$
Protection class		II, Insulated
Mechanical data		
Ambient temperature	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (Connection cable installed)	
Mechanical service life	10×10^{6} switching cycles	
Switching frequency	$\leq 60 / \mathrm{min}$.	
Type of connection	Cable $4 \times 0.75 \mathrm{~mm}^{2}$	
Protection class	IP67 conforming to EN 60529; DIN VDE 0470 T1	
Standards		
VDE 0660 T100, DIN EN 60947VDE 0660 T200, DIN EN 60947-	$\begin{aligned} & 0947-1 \\ & 60947-5- \end{aligned}$	

RIW

Slow-action
Slow-action
Snap-action

Switching operation

1 NC / 1 NO contact

2 NO contacts

1 NC / 1 NO contact

Overlapping

-(41)us @

-(41) © ©

AH
IWF

Slow-action Snap-action

6089102051
149-U1Z IWF

RIWF

Slow-action
Snap-action

6089117055
I49-U1Z RIWF

-(41)us @

© (41) © (CC)

Special features / variants

- Front mounting

-(41) Ms

Special features / variants

- Front mounting

-(41)us @

Special features / variants

- Vertical cable outlet

-(41)us @

Special features / variants

- Vertical cable outlet
- Front mounting

-(41)us) @c

Special features / variants

- Vertical cable outlet
- Front mounting

IN62, IN65 and I81

Recommended use

Thanks to its standard dimensions as well as its wide range of contacts and actuators, these switches can be used on safety facilities and for position monitoring in virtually any industrial application.

Product advantages

- Standard switch conforming to DIN EN 50047
- Standard actuator conforming to DIN EN 50047 (see page 16)
- Protection class IP66 and IP67 to VDE 0470 T1
- Enclosure and cover self-extinguishing (UL-94-V0)
- Actuator can be repositioned by $8 \times 45^{\circ}$
- Tool-free rotation and changing of actuator
- Connection designation conforming to DIN EN 50013
- Metal Actuator
- Metal fixing plate
- High reliability at low currents (1 mA)

Options

- Available with M12 connector
- Cable entry M16 x 1.5

Design layout

- Slow-action and snap-action contacts
- Versions: 1 NC / 1 NO, 2 NC, 2 NO, overlapping contacts
- All NC contacts with Θ in the circuit diagram are positively opening contacts
- Type: Zb (galvanically isolated changeover contact)

Mounting

- Two M4 screws (distance between centres 22 mm), adjustment with slots
- Two M5 screws for safety applications without additional fixing element (Fig. 1)
- Additionally secured by guide plate for lateral approach forces (Fig. 2 and page 71)
- Front mounting (depending on type, Fig. 3)

Installation advantages

- Snap-on cover can be released with screwdriver
- Cover opening range 135° (cover can also be detached from hinge)
- Cover protects switching element during installation
- Screw connections with self-lifting clamping plates
- Easy-action cover lock (close and press)

Technical data

Electrical data		
Rated insulation voltage	U_{i} max.	400 V AC
Conventional thermal current (up to)	$\mathrm{I}_{\text {the }}$	5 A
Rated operating voltage	U_{e} max.	$240 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V}$ DC
Utilisation category (up to)		AC-15, U/ $/ \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 1,5 \mathrm{~A}$ DC-13 Ue $/ I_{\mathrm{e}} 24 \mathrm{~V} / 1,5 \mathrm{~A}$ (B300 Table A.1)
Short-circuit protection (up to)		Fuse 4 A gG
Protection class		II, Insulated
Mechanical data		
Enclosure material	Thermoplastic, glass fibre-reinforced (UL 94-V0)	
Ambient temperature	$-30^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	
Mechanical service life (up to)	30×10^{6} switching cycles	
B10d (NC contact) cycles (up to) B10d (NO contact) cycles (up to)	30 Mio. 1 Mio.	
Switching frequency	$\leq 60 / \mathrm{min}$.	
Type of connection	4 Screw connections (M3)	
Conductor cross sections	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$	
Cable entry	$1 \times \mathrm{M} 20 \times 1,5$	
Standards		
VDE 0660 T211, DIN EN 60947-5-4, IEC DIN EN ISO 13849-1, DIN EN ISO 1384	$17-5-4$	

IN62, IN65

IN62 (Form B)

Switching operation
1 NC / 1 NO contact
2 NC contacts
2 NO contacts
1 NC / 1 NO contact
Overlapping

Approvals

(6.) © oguv
©

IN65-... SM (Form B)

(1) © ofove ©

IN65

Replacement actuator: 3918352345

IN65

SGS

The SGS is a bistable safety switch with remote release facility. Once switched, the SGS remains in this position until it is manually reset at the plunger or via an external button. A built-in solenoid actuator controls the release action.

The SGS can be used wherever an intentional (manual or electrical) reset function is required:

- In lift construction
- In door and gate systems
- In wind power stations
- Wherever safety is of prime importance

By correspondingly checking the NC contacts with positive opening action, an evaluator circuit is able to disconnect the power supply to a drive controller and shut down the machine.

SGS applications include

- Lift pre-switching (speed limiter)
- Monitoring of emergency release function
- Machine construction applications where specific reset after operation is required
- Use in areas difficult to access
- Remote monitoring and reset over large distances

Features:

- Plunger indicates switch status
- Plunger groove for manual reset
- 2 versions: 230 V AC and 24 V DC
- Reset via built-in solenoid actuator
- 3 cable outlets M20 1.5
- Switching functions: 2 NC contacts
- TÜV EN 81 approval
- Other actuators from the standard range on request

Product selection

Supply voltage reset $\mathbf{2 4}$ Volt				
Switching operation	Actuating force 3 N	Actuating force 6 N		
1NC / 1NO	-	-	-	-
2NC	6010853002	SGS-SA2Z W F3 24 V	6010853001	SGS-SA2Z W F6 24 V

Supply voltage reset $\mathbf{2 3 0}$ Volt

Switching operation	Actuating force 3 N	Actuating force 6 N	
1NC / 1NO	-	-	6010153027
2NC	6010853004	SGS-SA2Z W F3 230 V	6010853003

Technical data

Electrical data		
Protection class		II, Insulated
Switching elements		
Rated insulation voltage	U_{i}	250 V AC
Thermal current	$\mathrm{I}_{\text {the }}$	10 A
Utilisation category		$\begin{aligned} & \mathrm{AC}-15, \mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A} \\ & \mathrm{DC}-13, \mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}} 250 \mathrm{~V} / 0.27 \mathrm{~A} \end{aligned}$
Minimum switching voltage		24 V
Minimum switching current		5 mA
Positive opening	Θ	conforming IEC/EN 60947-5-1, Addendum K
Short-circuit protection		Fuse 4 A gL/gG
Electromagnet		Without free-wheeling diode
Thermal class		B ($130{ }^{\circ} \mathrm{C}$)
Rated operating voltage	U_{e}	$24 \mathrm{~V} \mathrm{DC} \mathrm{/} 230 \mathrm{~V} \mathrm{AC}$ (depending on type)
Rated operating current	I_{e}	2.3 A / 0.23 A AC
Duty factor	ED	3%
Minimum ON time	T_{i}	0.2 s
Maximum ON time	T_{e}	0.5 s
Minimum OFF time	T_{p}	17 s
Mechanical data		
Enclosure		Glass fibre-reinforced thermoplastic, self-extinguishing
Cover		Glass fibre-reinforced thermoplastic, self-extinguishing
Actuation		Plunger (thermoplastic)
Approach speed	$\mathrm{V}_{\text {max }}$	$0.5 \mathrm{~m} / \mathrm{s}$
Ambient temperature		$-25^{\circ} \mathrm{C}$ bis $+50^{\circ} \mathrm{C}$
Contact type		2 NC contacts (Zb) / NC contacts, 1 NO contacts (Zb)
Switching principle		Snap action system, bistable
Mechanical service life		5×10^{4} switching cycles
B10d		0,1 Mio.
Bolt		$2 \times \mathrm{M} 4 / 2 \times \mathrm{M} 5$ for safety applications
Type of connection Switching element		Screw connections
Conductor cross sections		Single-wire 0.5 ... $1.5 \mathrm{~mm}^{2}$
Type of connection Electromagnet		$2 \times$ butt connector similar to DIN 46341 (crushing zone $0,5-1,5 \mathrm{~mm}^{2}$)
Cable entry		3x M20x1,5
Installation position		Any
Contact opening		$4 \mathrm{x}>2 \mathrm{~mm}$
Protection class		IP65 conforming to IEC/EN 60529
Standards		
VDE 0660 T100, DIN EN 60947-1, IEC 6 VDE 0660 T200, DIN EN 60947-5-1, IEC DIN EN 81-1	$\begin{gathered} 0947- \\ 6094 \end{gathered}$	5-1

Insulation-Enclosed Limit Switches

Bi2

Recommended use

Thanks to its two cable entries, this switch is ideal for use in series-connected monitoring facilities.

Product advantages

- Protection class IP65 to VDE 0470 T1
- Enclosure and cover PA 6, self-extinguishing (UL-94 V0)
- Actuator can be repositioned by $4 \times 90^{\circ}$
- Cable entry $2 \times \mathrm{M} 16 \times 1.5$
- Connection designation conforming to DIN EN 50013

Options

- Available with M12 connector
- AS interface variants available
- Preassembled with customer-specific cables and connectors on request

Design layout

- Slow-action and snap-action contacts
- Versions: 1 NC / 1NO, 2 NC
- All NC contacts with Θ in the circuit diagram are positively opening contacts
- Type: Zb (galvanically isolated changeover contact)

Mounting

- Two M4 adjustment slots (distance between centres 22 mm)
- Two M4 adjustment slots (distance between centres 42 mm)
- Two M5 holes (distance between centre 21 mm) for safety applications
- Two M5 holes (distance between centre 41 mm) for safety applications without additional securing element
- Front mounting

Installation advantages

- Cover opening range 135° (cover can also be detached from hinge)
- Screw connections with self-lifting clamping plates
- Easy-action cover lock (close and press)
- Cover additionally secured with screw
- 2 cable entries for through-wiring

Technical data

Electrical data		
Rated insulation voltage	U_{i} max.	400 V AC
Conventional thermal current ${ }^{(1)}$	$\mathrm{I}_{\text {the }}$	10 A
Rated operating voltage	$U_{\text {e }}$ max.	240 VAC
Utilisation category		AC15, Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$
Short-circuit protection (up to) ${ }^{(1)}$		Fuse $10 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$
Protection class		II, Insulated
Mechanical data		
Enclosure material	Thermop	, glass fibre-reinforced
Ambient temperature	$-30^{\circ} \mathrm{C}$ to	
Mechanical service life (up to) ${ }^{\text {(1) }}$	10×10^{6}	hing cycles
B10d (up to) ${ }^{\text {(1) }}$	20 Mio .	
Switching frequency	$\leq 100 / \mathrm{m}$	
Type of connection	Screw co	tions
Conductor cross sections	Single-v Strande	$\begin{aligned} & .5-1.5 \mathrm{~mm}^{2} \text { or } \\ & \text { e with ferrule } 0.5-1.5 \mathrm{~mm}^{2} \end{aligned}$
Cable entry	$2 \times \mathrm{M} 16$	
Protection class	IP65 con	ing to EN 60529; DIN VDE 0470 T1
Standards		
VDE 0660 T100, DIN EN 60947-1, IEC 60947-1 VDE 0660 T200, DIN EN 60947-5-1, IEC 60947-5-1		

W
RIW

2 NO contacts

Approvals

(6) © ©

Replacement actuator: -

Special features / variants

(on request)

Special features / variants
(on request)

- With steel roller

Bi2

AH AV

2 NO contacts

1 NC / 1 NO contact

Overlapping

Approvals

(1). ©

Replacement actuator: 3918351166
Replacement actuator: 3918360984

Special features / variants

(on request)

- Available with different actuating directions
- With steel roller
- Various roller diameters
- Cranked or straight lever
- Various lever lengths

Special features / variants

(on request)

HW RO13.5

FF

(d1) © ©

Replacement actuator: 3918401031

Special features / variants

 (on request)- Available with different spring lengths
- Spring rod
- Various spring versions

AD

(6) © ©

Replacement actuator: 3918370986

Special features / variants

(on request)

Insulation-Enclosed Limit Switches

ENK

Recommended use

Thanks to its design and its metal actuator, the ENK limit switch is particularly suitable for applications requiring a sturdy safety switch made of plastic.

Product advantages

- Standard switch conforming to DIN EN 50041
- Standard actuator conforming to DIN EN 50041 (see page 15)
- Protection class IP65 to VDE 0470 T1
- Enclosure and cover PA 6, (UL-94-V0)
- Actuator can be repositioned by $4 \times 90^{\circ}$
- Cable entry M20 x 1.5
- Connection designation conforming to DIN EN 50013
- Metal actuators for high loads

Options

- Available with M12 connector
- AS interface variants available
- Preassembled with customer-specific cables and connectors on request

Design layout

- Slow-action and snap-action contacts
- Versions: 1 NC / 1NO, 2 NC, 3 NC, overlapping contacts
- Latching function on request
- All NC contacts with Θ in the circuit diagram are positively opening contacts
- Type: Zb (galvanically isolated changeover contact)

Mounting

- 2 adjustment slots for M5 screws
- 2 holes for M5 mounting screws in safety applications

Installation advantages

- Snap-on cover can be released with screwdriver
- Cover opening range 150° (cover can also be detached from hinge)
- Cover protects switching element during installation
- Screw connections with self-lifting clamping plates
- Easy-action cover lock (close and press

Technical data

Electrical data		
Rated insulation voltage	U_{i} max.	400 V AC
Conventional thermal current (up to) ${ }^{(1)}$	$1_{\text {the }}$	10 A
Rated operating voltage	U_{e} max.	240 V
Utilisation category		AC-15, $\mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$
Short-circuit protection (up to) ${ }^{(1)}$		Fuse $10 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$
Protection class		II, Insulated
Mechanical data		
Enclosure material	Thermop	tic, glass fibre-reinforced
Ambient temperature	$-30^{\circ} \mathrm{C}$ to	$80^{\circ} \mathrm{C}$
Mechanical service life (up to) ${ }^{\text {(1) }}$	10×10^{6}	thing cycles
B10d (up to) ${ }^{\text {(1) }}$	20 Mio .	
Switching frequency	$\leq 100 / \mathrm{m}$	
Type of connection	Screw co	ections
Conductor cross sections	Single-w Strande	$\begin{aligned} & 0.5-1.5 \mathrm{~mm}^{2} \text { or } \\ & \text { ire with ferrule } 0.5-1.5 \mathrm{~mm}^{2} \end{aligned}$
Cable entry	$1 \times \mathrm{M} 20$	$5 \approx 0.15 \mathrm{~kg}$
Protection class	IP65 onf	ing to EN 60529; DIN VDE 0470 T1
Standards		
VDE 0660 T100, DIN EN 60947-1, IEC 60947-1 VDE 0660 T200, DIN EN 60947-5-1, IEC 60947-5-1		

2 NO contacts

Approvals

(4L) © © (6)

Replacement actuator: 3918020660

Special features / variants

(on request)

- Available with black enclosure and following contacts: 3 NC contacts

(41) © (6)

Replacement actuator: 3918170661

Special features / variants

(on request)

- Available for high temperature range and following contacts: 3 NC contacts

ENK

2 NO contacts

Approvals

(41) © (16)

Replacement actuator: 3918350737

Special features / variants

(on request)

- Available with black enclosure
- With 50 mm diameter rubber roller and following contacts: 3 NC contacts

(14) © (16)

Replacement actuator: 3918360738

Special features / variants

(on request)

- Available with different lever lengths and roller diameters
- With 50 mm diameter rubber roller
- With roller over switch

AD (Form D)
HW RO2O

(1L) (14) (C)

Replacement actuator: 3918370739

Special features / variants

(on request)

- Available with various actuator directions and actuator lengths

(LL) © © (CC)

Replacement actuator: 3918200906
Replacement actuator: 3918400662

Special features / variants

(on request)

- Available with black enclosure and various roller diameters

Repementactuator. 3918400662

Special features / variants

(on request)

FF

Metal-Enclosed Limit Switches

GC

Recommended use

Thanks to its compact design, this metal-enclosed switch is ideally suited for virtually all safety and position monitoring applications.

Product advantages

- Protection class IP65 to VDE 0470 T1
- Enclosure: Aluminium pressure die-casting
- Cover: Sheet aluminium
- Actuator can be repositioned by $4 \times 90^{\circ}$
- Cable entry M20 x 1.5
- Connection designation conforming to DIN EN 50013
- Metal actuators for high loads
- Graduated adjustment of AH lever
- Selectable direction-dependent contact-making of AH actuator (basic setting: contact-making both sides)

Options

- AS interface versions on request
- Preassembled with customer-specific cables and connectors on request

Design layout

- Slow-action and snap-action contacts
- Versions: 1 NC / 1NO, 2 NC / 2 NO, 2 NC, overlapping contacts
- All NC contacts with Θ in the circuit diagram are positively opening contacts
- Type: Zb (galvanically isolated changeover contact)
- Latching function on request

Mounting

- 2 adjustment slots for M4 screws (for safety applications with blind hole for $\varnothing 4.0 \mathrm{~mm}$ fitted pin in enclosure base or enclosure with holes for M5)

Installation advantages

- Screw connections with self-lifting clamping plates
- Captive cover screws
- Easy-to-change switching system thanks to snap-in retainer
- Finely adjustable switching point with adjusting screw

Technical data

Electrical data		
Rated insulation voltage (up to) ${ }^{(1)}$	U_{i} max.	400 V AC
Conventional thermal current (up to) ${ }^{(1)}$	$I_{\text {the }}$	10 A
Rated operating voltage	U_{e} max.	240 V
Utilization category (up to) ${ }^{(1)}$		AC-15, U/ $/ \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$
Short-circuit protection (up to) ${ }^{(1)}$		Fuse $10 \mathrm{AgL} / \mathrm{gG}$
Protection class		I
Mechanical data		
Enclosure material	Aluminiu	m pressure die-casting
Ambient temperature	$-30^{\circ} \mathrm{Ct}$	$+80^{\circ} \mathrm{C}$
Mechanical service life (up to) ${ }^{11}$	10×10^{6}	witching cycles
B10d (up to) ${ }^{(1)}$	20 Mill .	
Switching frequency	$\leq 100 / \mathrm{m}$	
Type of connection	Screw co	nnections
Conductor cross sections	Single-w Stranded	ire $0.5-1.5 \mathrm{~mm}^{2}$ or wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$
Cable entry	$1 \times \mathrm{M} 20$	1.5
Protection class	IP65 con	forming to IEC/EN 60529
Standards		
VDE 0660 T100, DIN EN 60947-1, IEC 60947-1 VDE 0660 T200, DIN EN 60947-5-1, IEC 60947-5-1		

STIW

2 NO contacts

Approvals

(4) ©

Replacement actuator: 3912030546

Special features / variants
(on request)

(41) ©

Replacement actuator: 3912050523

Special features / variants

- Actuator length adjustable with adjusting screw

GC

AV AD

(4) ⿶ㅏㄴ

Replacement actuator: 3912360723

Special features / variants

(on request)

- Various roller diameters
- Different lever lengths
- With roller over switch and with following contacts: 2 NC / 2 NO contact

Special features / variants

(on request)

- Available with various actuator lengths and actuator directions
- With following contacts: 2 NC / 1 NO with overlap (larger enclosure)

HIW

(4) ©

Replacement actuator: 3912200552

Special features / variants

(on request)

- Available with different actuating directions
- Available with steel roller
- With following contacts:

2 NC / 2 NO contact
1 NC / 2 NO with overlap
(larger enclosure)

GC

2 NO contacts

1 NC / 1 NO contact

Overlapping

Approvals

(14) © (6)

Replacement actuator: 3912400510

Special features / variants

(on request)

- Different spring lengths
- Different spring versions or spring rod

(14) (15)

Replacement actuator: 3912390725

Special features / variants

(on request)

- Available with various actuator lengths and actuator directions

DR

Slow-action
Snap-action

Replacement actuator: 3912410593

Special features / variants
(on request)

Metal-Enclosed Limit Switches

SN2

Recommended use

With its three cable entries and spacious connection area, the SN2 limit switch is the optimum solution for through-wiring or even branching off electrical circuits.

Product advantages

- Protection class IP65 to VDE 0470 T1
- Enclosure: Aluminium pressure die-casting
- Cover: Sheet aluminium
- Actuator can be repositioned by $4 \times 90^{\circ}$
- Cable entry $3 \times \mathrm{M} 20 \times 1.5$
- Connection designation conforming to DIN EN 50013
- Metal actuators for high loads
- Graduated adjustment of AH lever
- Selectable direction-dependent contact-making of AH actuator (basic setting: contact-making both sides)

Options

- AS interface versions on request
- Preassembled with customer-specific cables and connectors on request

Design layout

- Slow-action and snap-action contacts
- Versions: 1 NC / 1NO, 2 NC
- All NC contacts with Θ in the circuit diagram are positively opening contacts
- Type: Zb (galvanically isolated changeover contact)
- Latching function on request

Mounting

- 2 adjustment slots for M5 screws
- 2 addition holes for M5 mounting screws in safety applications

Installation advantages

- 3 cable entries for through-wiring
- Generously dimensioned connection space
- Screw connections with self-lifting clamping plates
- Easy-to-change switching system thanks to snap-in retainer
- Finely adjustable switching point with adjusting screw

Technical data

w
LIW

Slow-action
Snap-action

6033194022
SN2-SU1 LIW

2 NO contacts

1 NC / 1 NO contact

Overlapping

(14) (8)

Replacement actuator: 3913030537

Special features / variants

(on request)

Special features / variants

- Telescopic plunger, particularly long actuation travel of 9 mm

SN2

SN2

1 NC / 1 NO contact
2 NC contacts

2 NO contacts

1 NC / 1 NO contact
Overlapping

Approvals

Replacement actuator: 3913371712 without screws, without seals

3992000042
accessory bag
(40 screws,
10 seals)

Special features / variants

(on request)

ENM2

Recommended use

With its standard enclosure, the ENM2 limit switch can be used universally in all industrial and safety applications.

Product advantages

- Standard switch conforming to DIN EN 50041
- Standard actuator conforming to DIN EN 50041 (see page 15)
- Protection class IP65 to VDE 0470 T1
- Enclosure: Aluminium pressure die-casting
- Cover: Sheet aluminium
- Actuator can be repositioned by $4 \times 90^{\circ}$
- Cable entry M20 x 1.5
- Connection designation conforming to DIN EN 50013
- Metal actuators for high loads

Options

- AS interface versions on request
- Preassembled with customer-specific cables and connectors on request

Design layout

- Slow-action and snap-action contacts
- Versions: 1 NC / 1NO, 2 NC, overlapping contacts
- All NC contacts with Θ in the circuit diagram are positively opening contacts
- Type: Zb (galvanically isolated changeover contact)

Mounting

- Two M5 adjustment screws with slots
- Two M5 screws for safety applications without additional securing element

Installation advantages

- Screw connections with self-lifting clamping plates
- Easy-to-change switching system thanks to snap-in retainer (depending on type)
- Finely adjustable switching point with adjusting screw
- Captive cover screws
- Enlarged connection space
- Earthing surface on same level as switching system

Technical data

Electrical data		
Rated insulation voltage (up to) ${ }^{(1)}$	U_{i} max.	400 V AC
Conventional thermal current (up to) ${ }^{\text {(1) }}$	$\mathrm{I}_{\text {the }}$	10 A
Rated operating voltage	U_{e} max.	240 V
Utilization category (up to) ${ }^{\text {(1) }}$		A300, AC-15, Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$
Short-circuit protection (up to) ${ }^{(1)}$		Fuse $10 \mathrm{AgL/gG}$
Protection class		1
Mechanical data		
Enclosure material	Aluminiu	m pressure die-casting
Ambient temperature	$-30^{\circ} \mathrm{C}$ to	$+80^{\circ} \mathrm{C}$
Mechanical service life (up to) ${ }^{\text {(1) }}$	10×10^{6}	witching cycles
B10d (up to) ${ }^{\text {(1) }}$	20 Mill.	
Switching frequency	$\leq 100 / \mathrm{m}$	
Type of connection	Screw co	nnections
Conductor cross sections	Single-w Stranded	ire $0.5-1.5 \mathrm{~mm}^{2}$ or wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$
Cable entry	$1 \times \mathrm{M} 20$	$\times 1.5$
Protection class	IP65 con	forming to IEC/EN 60529
Standards		
VDE 0660 T100, DIN EN 60947-1, IEC 60947-1 VDE 0660 T200, DIN EN 60947-5-1, IEC 60947-5-1		

ENM2

IW (Form B)

Switching operation
1 NC / 1 NO contact
2 NC contacts

2 NO contacts
1 NC / 1 NO contact
Overlapping

Approvals

(14) (15)

Replacement actuator: 3918020584

Special features / variants

(on request)

- Also available with following contacts:

2 NC /1 NO with overlap
1 NC / 2 NO with overlap

Special features / variants

(on request)

- Available with different actuating directions
- High temperature range
- Various roller diameters
- Also available with following contacts:

2 NC / 1 NO with overlap
1 NC / 2 NO with overlap

DGKW RO20

(4) 다

Replacement actuator: 3918211656

Special features / variants

(on request)

- Available with different actuating directions

(14) (18)

Replacement actuator: 3918271655

Special features / variants

(on request)

- Available with different actuating directions

ENM2

AHZ

Slow-action

6087135030
ENM2-U1Z
AHZ

(4) 따․

Replacement actuator: -

Special features / variants

- Positively opening action, forward and return AHZ
- For special safety applications, the positive opening action of the normally-closed contacts takes place both in forward (moving in one direction) as well as in return (moving back to home position) direction
- For personal protection applications movement of the roller must be restrained in a guide block in both directions

Metal-Enclosed Limit Switches

D

Recommended use

Heavy duty enclosure for harsh operating conditions with particularly tough design of actuator and switching systems.

Product advantages

- Protection class IP65 to VDE 0470 T1
- Enclosure: Aluminium pressure die-casting
- Cover: Sheet aluminium
- Actuator can be repositioned by $4 \times 90^{\circ}$ (depending on type)
- Cable entries $2 \times \mathrm{M} 20 \times 1.5$
- Connection designation conforming to DIN EN 50013
- Sturdy contacts
- Hard wearing guide bushes

Options

- AS interface versions on request
- Preassembled with customer-specific cables and connectors on request

Design layout

- Slow-action and snap-action contacts
- Versions: 1 NC / 1NO, 2 NC, 2 NO, 3 NC, 3 NO, overlapping contacts
- All NC contacts with Θ in the circuit diagram are positively opening contacts
- Latching function on request

Mounting

- 4 slots for M5 screws

Installation advantages

- 2 cable entries for through-wiring
- Generously dimensioned connection space
- Captive cover screws

Technical data

Electrical data	
Rated insulation voltage	U_{i} max. 400 V AC
Conventional thermal current (up to) ${ }^{\text {(1) }}$	$\mathrm{I}_{\text {the }} 10 \mathrm{~A}$
Rated operating voltage	U_{e} max. 240 V
Utilization category	AC-15, Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$
Short-circuit protection (up to) ${ }^{(1)}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$
Protection class	1
Mechanical data	
Enclosure material	Aluminium pressure die-casting
Ambient temperature	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Mechanical service life	10×10^{6} switching cycles
B10d	20 Mill .
Switching frequency	$\leq 100 / \mathrm{min}$.
Type of connection	Screw connections
Conductor cross sections	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$
Cable entry	$2 \times \mathrm{M} 20 \times 1.5$
Protection class	IP65 conforming to IEC/EN 60529
Standards	
VDE 0660 T100, DIN EN 60947-1, IEC 60947-1 VDE 0660 T200, DIN EN 60947-5-1, IEC 60947-5-1	
(1) Depending on switching system. See	on Pages 72-75.

(4) © ©

Replacement actuator:-

Special features / variants

(on request)

- Also available with following contacts:

3 NC contacts
3 NO contacts
2 NC / 2 NO contact
(larger enclosure)

Special features / variants

(on request)

- Available for high temperature range
- With following contacts:

3 NC contacts
3 NO contacts
2 NC / 2 NO contact
(larger enclosure)

D

2 NO contacts

Approvals

(cc)

Replacement actuator: 3914350924

Special features / variants

(on request)

- With steel roller, various roller diameters
- Cranked or straight lever
- Different lever lengths
- Also available with following contacts:

3 NC contacts
2 NC / 2 NO contact

Replacement actuator: $\mathbf{3 9 1 4 2 1 1 0 6 5}$

Special features / variants

(on request)

- Available for high temperature range
- With following contacts:

3 NC contacts 2 NC / 2 NO contact
(larger enclosure)

(15) ©

Replacement actuator: -

Special features / variants

(on request)

- Also available with following contacts:

3 NC contacts
3 NO contacts
2 NC / 2 NO contact
(larger enclosure)

Overview of Actuators

Actuator	Designation	Collar iw = internal w = external	Plastic series		Metal series						
			COMBI	TINY 2	$\begin{aligned} & \text { IN62 } \\ & \text { IN65 } \end{aligned}$	BIGGY 2	ENK	GC I	SN 2	ENM 2	DI
Plunger	-	iw	-	-	-	-	\bullet	-	-	-	-
	-	w	-	\bullet	\bullet	\bullet	-	-	-	-	-
	-	IP30	\bullet	-	-	-	-	-	-	-	-
	-	IP43	-	-	-	-	-	-	-	-	\bigcirc
Ball	KU	iw	-	-	-	-	-	0	0	0	-
Mushroom head	P	w	-	-	-	-	-	-	-	-	-
Telescopic plunger	L	iw	-	-	-	-	-	\bullet	0	0	-
Adjustable plunger	ST	w	-	-	-	-	-	\bullet	0	0	\bullet
	SM	iw	-	-	\bullet	-	-	-	-	-	-
	SK	w	-	-	\bullet	-	-	-	-	-	-
Plunger	ST	iw	-	-	-	-	-	-	0	0	-
	ST	IP30	\bullet	-	-	-	-	-	-	-	-
Button	K	IP30	\bullet	-	-	-	-	-	-	-	-
Roller	R	IP30	\bullet	-	-	-	-	-	-	-	-
	R	iw	-	\bullet	0	\bullet	\bullet	\bullet	\bullet	\bullet	-
	RK	iw	-	-	\bullet	-	-	-	-	-	-
		w	-	-	-	-	-	-	-	-	\bullet
		IP43	-	-	-	-	-	-	-	-	0
Roller, long	R ... L	iw	-	0	\bullet	0	-	-	-	-	-
Roller, short	R ... K	iw	-	\bigcirc	-	\bigcirc	-	-	-	-	-
Lever	H	IP30	-	-	-	-	-	-	-	-	-
	H	w	-	-	-	-	-	-	-	-	-
	H, HT	iw	-	-	-	-	-	-	0	0	-
	HK	iw	-	-	-	-	-	-	-	-	-
Lever, long	H/D-WI	w	-	-	-	-	-	\bullet	\bullet	0	-
	HL	iw	-	-	-	-	-	\bullet	0	0	-
	HL/D-H	w	-	-	-	-	-	-	\bigcirc	\bigcirc	-
	D-H	IP43	-	-	-	-	-	-	-	-	0
Pivot joint, lever	DGH	w	-	\bigcirc	-	\bigcirc	O	0	-	-	-
	DGHK	iw	-	-	\bullet	-	-	-	-	-	-
Pivot joint, cranked lever	DGK	w	-	0	\bullet	0	0	0	\bullet	\bullet	-
	DGKK	iw	-	-	\bullet	-	-	-	-	-	-

Cranked lever	KN	iw	-	-	-	-	-	-	0	0	-
	KN	w	-	0	\bullet	0	-	-	\bigcirc	\bigcirc	0
	KNK	iw	-	-	-	-	-	-	-	-	-
Cranked lever link	KG	iw	-	-	-	-	-	\bullet	0	0	-
	KG	w	-	0	\bullet	0	-	-	0	0	-

Double roller	DR	iw	-	-	-	-	-	-	0	0	-
Spring feeler	FF	iw	-	-	-	-	-	-	\bullet	\bigcirc	-
	FF	w	-	-	0	-	-	-	-	-	-
Spring feeler, long	FFL	w	-	-	-	-	-	-	0	\bigcirc	-
Spindle-mounted lever	AH	iw	-	-	-	-	-	-	0	0	-
	AHK	iw	-	-	\bullet	-	-	-	-	-	-
Spindle-mounted lever, star clamping	AHS	iw	-	-	\bullet	-	-	0	-	0	-
Spindle-mounted lever, star clamping, rubber roller	AHSGU	iw	-	-	\bullet	-	\bullet	-	-	-	-
Spindle-mounted lever, star clamping, fine spline	AHS-V	iw	-	-	-	-	-	0	\bullet	\bullet	-
Spindle-mounted lever for positive opening in forward/return dir.	AHZ	iw	-	-	-	-	-	\bigcirc	0	\bullet	-
Spindle-mounted lever, adjustable	AV	iw	-	-	-	\bullet	\bullet	-	\bigcirc	\bullet	\bullet
	AVK	iw	-	-	\bullet	-	-	-	-	-	-

Spindle-mounted lever, wire	AD	iw	-	-	-	-	-	-	0	-	0
	AHDM	iw	-	-	\bullet	-	-	-	-	-	-
Spindle-mounted lever, spring	AF	iw	-	0	-	0	0	-	\bullet	\bigcirc	-

Limit Switch - Spindle-Mounted Lever

Switching devices with spindle-mounted lever enclosure

On delivery, contact-making takes place in both pivot directions corresponding to the switching diagrams.

Adaptation of basic actuator setting on spindle

The basic setting of the device can be varied in steps and fixed for exact positioning:

- AH, AHS, AHZ, AF, AD, AV:

Adjustment in steps of 15° (Fig. 1)

- AHS-V:

Adjustment in steps of 7.5° or 15° (only here Θ) by repositioning the intermediate piece (Fig. 2)

- Adaptation AV, AD:

Adjustment in radial direction

- AH, AHS, AHS-V, AHZ, AV: The roller levers can be used in a different axial actuating plane by repositioning by 180° (Fig. 3 and 4)

Adaptation of direction-independent switching function

With actuators AHS, AHS-V, AV, AD.

On delivery, contact-making takes place in both pivot directions corresponding to the switching diagrams. An idle function in the required pivot direction is achieved by simply repositioning the actuator cam (Fig. 5 and 6).

The idle function can be used in control systems that cannot process successive rebound pulses caused by oscillatory movement of extremely long AV/AD actuators.

Positive opening action
 Forward and return AHZ

For special safety applications, the positive opening action of the normally-closed contacts takes place both in forward (moving in one direction) as well as in return (moving back to home position) direction. For personal protection applications movement of the roller must be restrained in a guide block in both directions (Fig. 7 and 8).

Fig. 1

Fig. 3

Fig. 5

Fig. 7

Fig. 8

Fig. 2

Fig. 4

Fig. 6

Note on changing
actuators AH, AHS, AHS-V, AHZ, AF, AD, AV, DGH, DGK

The guaranteed as-delivered properties change when the actuation directions are adjusted and when actuators are repositioned by 90°.

The user himself must ensure that the device achieves safe operation for its intended purpose.

Accessories for Insulation-Enclosed Limit Switches

The Finger guard help to prevent the user from an electric shock.

The guide element allows additional support to the rear of the switch.

Article
Series
Article number

The mounting plate allows IN62 / IN65 / I81 switches to be din rail mounted in control enclosures.

Article
Series
Article number

Mounting plate, control cabinet
IN62 / IN65
3595900087

Finger guard
Biggy 2, ENK
3595900060

Guide element IN62 / IN65 / 181 3515900209

Sealed cable gland M16 3998000120 3998000121

Article
Series
Article number

NPT adapter M16 on 1/2" (NPT 14) Various families 3998000115

NPT adapter M20 on 1/2" (NPT 14)
Various families
3998000116

Electrical data

Type 1 switches

Slow-action contact			C2 / Ti2							
Switching function	Switching contacts	Designation	U_{1}	$\mathrm{I}_{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d	$\mathbf{U V}_{\mathbf{i}}$	$\mathrm{I}_{\text {the }}$
Normally-closed contact	2NC	A2Z	250 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	3×10^{6}	6 mill.	250 V	10 A
Changeover contact	1NC/1S	U1Z	250 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	3×10^{6}	6 mill.	250 V	10 A
Changeover contact, overlapping	$1 \mathrm{NC} / 1 \mathrm{~S}$	UV1Z	-	-	-	-	-	-	-	-
Normally-open contact	25	E2	250 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	3×10^{6}	-	-	-

Snap-action contact			C2 / Ti2							
Switching function	Switching contacts	Designation	U_{1}	$\mathrm{I}_{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d	$\mathrm{U}_{\mathbf{i}}$	Ithe
Normally-closed contact	2NC	SA2Z	250 V	10 A	AC-15 Ue $/ 1 \mathrm{l} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	3×10^{6}	6 mill.	250 V	10 A
Changeover contact	$1 \mathrm{NC} / 1 \mathrm{~S}$	SU1Z	250 V	10 A	AC-15 $\mathrm{U}_{\mathrm{e}} / \mathrm{le}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	3×10^{6}	6 mill.	250 V	10 A
Normally-open contact	2 S	SE2	250 V	10 A	$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	3×10^{6}	-	-	-

Slow-action contact			Bi2							
Switching function	Switching contacts	Designation	$\mathrm{U}_{\mathbf{i}}$	$\mathrm{I}_{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d	$\mathrm{U}_{\mathbf{i}}$	$\mathrm{I}_{\text {the }}$
Normally-closed contact	2NC	A2Z	400 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	1×10^{6}	2 mill.	400 V	5 A
Changeover contact	1NC/1NO	U1Z	400 V	10 A	$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	10×10^{6}	20 mill.	400 V	10 A
Changeover contact, overlapping	1NC/1NO	UV1Z	400 V	10 A	$\mathrm{AC}-15 \mathrm{U} / \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	10×10^{6}	20 mill.	400 V	10 A
Normally-open contact	2 S	E2	-	-	-	-	-	-	-	-

Snap-action contact			Bi2						$\mathrm{U}_{\mathbf{i}}$	$\mathrm{t}_{\text {the }}$
Switching function	Switching contacts	Designation	$\mathrm{U}_{\mathbf{i}}$	$\mathrm{Ithe}^{\text {en }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d		
Normally-closed contact	2NC	SA2Z	-	-	-	-	-	-	-	-
Changeover contact	1NC/NO	SU1Z	400 V	10 A	$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{l} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $2 \mathrm{~A} \mathrm{gL/gG}$	10×10^{6}	20 mill.	400 V	10 A
Normally-open contact	25	SE2	-	-	-	-	-	-	-	-

Slow-action contact			GC						$\mathrm{U}_{\mathbf{i}}$	$\mathrm{I}_{\text {the }}$
Switching function	Switching contacts	Designation	$\mathrm{U}_{\mathbf{i}}$	$\mathrm{t}_{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d		
Normally-closed contact	2NC	A2Z	400 V	6 A	-	Fuse $6 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	1×10^{5}	$0,2 \mathrm{mill}$. ${ }^{\text {(}}$	400 V	10 A
Changeover contact	1NC/ 1 NO	U1Z	400 V	10 A	$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{l} \mathrm{e}^{2} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	10×10^{6}	20 mill. ${ }^{2}$	400 V	10 A
Changeover contact, overlapping	1NC/1NO	UV1Z	400 V	10 A	$\mathrm{AC}-15 \mathrm{U} / \mathrm{Il}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	10×10^{6}	20 mill.	-	-
Normally-open contact	25	E2	400 V	6 A	-	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	3×10^{6}	-	-	-
(1) 6021820175 GC-A2 HIW $=20$ million (2) 60121100622 GC-U1Z VKS, 6121100623 GC-U1Z VKW $=2$ million										
Snap-action contact			GC							
Switching function	Switching contacts	Designation	U_{1}	$\mathrm{I}_{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d	$\mathrm{U}_{\mathbf{i}}$	$\mathrm{I}_{\text {the }}$
Normally-closed contact	2NC	SA2Z	-	-	-	-	-	-	-	-
Changeover contact	1NC / 1NO	SU1Z	400 V	10 A	$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse 2 A gL/gG	10×10^{6}	20 mill.	400 V	10 A
Normally-open contact	25	SE2	-	-		- -	-	-	-	-

IF				188					
Utilization category	Short-circuit protection	Mechanical service life	B10d	$\mathrm{U}_{\mathbf{i}}$	$\mathrm{I}_{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d
AC-15 $\mathrm{U}_{\mathrm{e}} / \mathrm{l}$ e $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	3×10^{6}	6 mill.	250 V	5 A	AC-15 $\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 1.5 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	1×10^{6}	2 mill.
$\mathrm{AC}-15 \mathrm{U} / \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	3×10^{6}	6 mill.	250 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	10×10^{6}	20 mill.*
-	-	-	-	250 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	10×10^{6}	20 mill.
-	-	-	-	250 V	5 A	AC-15 Ue $/ \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 1.5 \mathrm{~A}$	Fuse $6 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	1×10^{6}	-
*6116819140 I88-U1Z KS, 6186103005 I88-U1Z W RAST = 2 million									
IF				188					
Utilization category	Short-circuit protection	Mechanical service life	B10d	$\mathbf{U}_{\mathbf{i}}$	Ithe	Utilization category	Short-circuit protection	Mechanical service life	B10d
$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{l}$ e $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	3×10^{6}	6 mill.	-	-	-	-	-	-
$\mathrm{AC}-15 \mathrm{U} / \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	3×10^{6}	6 mill.	250 V	10 A	$\mathrm{AC}-15 \mathrm{U} / \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $2 \mathrm{AgL/gG}$	10×10^{6}	20 mill.
-	-	-	-	-	-	-	-	-	-

ENK			
Utilization category	Short-circuit protection	Mechanical service life	B10d
		1×10^{6}	2 mill.
$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 1.5 \mathrm{~A}$	Fuse $6 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	10×10^{6}	20 mill.*
$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	10×10^{6}	20 mill.
$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	-	-
-	-		

*6181135251 ENK-U1Z AHSGU RAST RO50 $=2$ million

ENK			
Utilization category	Short-circuit protection	Mechanical service life	B10d
-	-	-	-
AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $2 \mathrm{AgL} / \mathrm{gG}$	10×10^{6}	20 mill.
-	-	-	-

Electrical data

Type 1 switches

Slow-action contact			D					
Switching function	Switching contacts	Designation	U_{1}	$\mathrm{I}_{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d
Normally-closed contact	2NC	A2Z	400 V	10 A	$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL/gG}$	10×10^{6}	20 mill.
Changeover contact	1NC/1S	U1Z	400 V	10 A	$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	10×10^{6}	20 mill.
Changeover contact, overlapping	$1 \mathrm{NC} / 15$	UV1Z	400 V	16 A	$\mathrm{AC}-15 \mathrm{U} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL/gG}$	10×10^{6}	20 mill.
Normally-open contact	25	E2	400 V	10 A	$\mathrm{AC}-15 \mathrm{U} / \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	10×10^{6}	-

Snap-action contact			D					
Switching function	Switching contacts	Designation	U_{i}	$\mathrm{I}_{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d
			-	-	-	-	-	-
Normally-closed contact	2NC	SA2Z	-	-	-	-	-	-
Changeover contact	1NC/1S	SU1Z	400 V	10 A	$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	10×10^{6}	20 mill.
Normally-open contact	25	SE2	-	-	-	-	-	-

Type 2 switches

Slow-action contact			SKT						$\mathbf{U}_{\mathbf{i}}$	$\mathrm{I}_{\text {the }}$
Switching function	Switching contacts	Designation	U_{i}	$\mathrm{Ithe}^{\text {en }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d		
Normally-closed contact		A1Z								
Normally-closed contact	2NC	A2Z	250 V	10 A	$\begin{aligned} & \mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{Ie}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A} \\ & \mathrm{DC}-13 \mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 250 \mathrm{~V} / 0.27 \mathrm{~A} \end{aligned}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	$\begin{aligned} & \mathrm{A}^{*} 1 \times 10^{6} \\ & \mathrm{~B}^{*} 1 \times 10^{5} \end{aligned}$	2 mill.	250 V	10 A
Changeover contact	1NC/1S	U1/U1Z	250 V	10 A	AC-15 Ue $/ I_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$ DC-13 Ue/le $250 \mathrm{~V} / 0.27 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	$\begin{aligned} & A^{*} \times 10^{6} \\ & B^{*} 1 \times 10^{5} \end{aligned}$	2 mill.	250 V	10 A
Changeover contact, overlapping	2NC/1S	UV15Z	250 V	5 A	-	-	-	-	250 V	5 A
							* $A=$ Standard; $B=$ Increased actuating force			

Slow-action contact			SK						$\mathrm{U}_{\mathbf{i}}$	$\mathrm{I}_{\text {the }}$
Switching function	Switching contacts	Designation	U_{i}	$\mathrm{I}_{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d		
Normally-closed contact	1NC	A1Z	-	-	-	-	-	-	-	-
Normally-closed contact	2NC	A2Z	250 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	1×10^{6}	2 mill.		
Changeover contact	1NC/1S	U1/U1Z	250 V	10 A	AC-15 Ue $/ 1 \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	1×10^{6}	2 mill.	250 V	10 A
Changeover contact, overlapping	2NC/1S	UV15Z	400 V	5 A	$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{le}_{\mathrm{e}} 240 \mathrm{~V} / 1.5 \mathrm{~A}$	Fuse $6 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	1×10^{6}	2 mill.	-	-
Slow-action contact			ENM2							
Switching function	Switching contacts	Designation	$\mathrm{U}_{\mathbf{i}}$	$\mathrm{I}_{\text {the }}$	Utilization category	Short-circuit protection	Mechanical service life	B10d	$\mathrm{U}_{\mathbf{i}}$	$\mathrm{I}_{\text {the }}$
Normally-closed contact	1NC	A1Z	-	-	-	-	-	-	-	-
Normally-closed contact	2NC	A2Z	400 V	10 A	$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{AgL} / \mathrm{gG}$	1×10^{6}	2 mill.	400 V	6 A
Changeover contact	1NC/1S	U1/U1Z	400 V	10 A	AC-15 Ue/le $240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	1×10^{6}	2 mill.	400 V	10 A
Changeover contact, overlapping	2NC/1S	UV15Z	250 V	5 A	AC-15 Ue/le $240 \mathrm{~V} / 1.5 \mathrm{~A}$	Fuse $6 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	1×10^{6}	2 mill.		

$\mathbf{U}_{\mathbf{i}} \quad$ Rated insulation voltage
$I_{\text {the }} \quad$ Conventional thermal output from devices in enclosure

GC			
Utilization category	Short-circuit protection	Mechanical service life	B10d
		-	-
$\mathrm{AC}-15 \mathrm{U} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $6 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	1×10^{6}	2 mill.
$\mathrm{AC}-15 \mathrm{U} / \mathrm{U}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	1×10^{6}	2 mill.

Safety Switches with Separate Actuator

SKT

Safety switches with separate actuator are positive opening position switches. In terms of design, the switching element and actuator are separated. On actuation, the switching element and actuator are either brought together or separated. The positive opening NC contact is always open when the actuator is withdrawn. These switches are assigned to Type 2.

BERNSTEIN offers various versions of these Type 2 switches. The differences and advantages of the individual switch groups are outlined in the following.

The SKT is the smallest safety switch with a separate actuator. It is particularly suited for applications that require an extremely slim and short switch design. Its rotary head, two actuator openings and various switching functions underscore its versatility in extremely confined spaces.

Added to this, the SKT features other options to meet any requirements:

- Integrated eject function (FE):

The actuator is ejected if the door is not locked securely. Consequently, the safety contact is opened, thus preventing the machine from starting up. In addition, this function makes it apparent that the door still needs to be locked.

- Actuating force (up to $\mathbf{5 0} \mathbf{N}$):

The standard actuating force is 10 N . Depending on the switch variant, an actuating force of 50 N can also be selected. In many applications, hatches and doors need to be secured to prevent them being opened unintentionally. This is achieved by means of bolts, fasteners or other latching mechanisms. The SKI safety switch should be selected for applications requiring increased actuating force.

- Universal Hinged Actuator (MRU):

The MRU actuator is ideally suited for applications where the installation conditions severely restrict the actuating travel or radius. It has an adjustable actuating radius in the horizontal and vertical plane.

$\mathrm{R}_{\text {min }} 150 \mathrm{~mm}$
Actuating forces FE to FI50

Technical data

Electrical data		
Rated insulation voltage	U_{i} max.	250 V
Rated operating voltage	U_{e} max.	240 V AC
Conventional thermal current	$\mathrm{I}_{\text {the }}$	10 A
Utilization category		AC-15, U $/ I_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$; DC-13, $\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 250 \mathrm{~V} / 0.27 \mathrm{~A}$
Mechanical data		
Switching frequency		$\leq 30 / \mathrm{min}$
Mechanical service life Standard Mechanical service life encreased ac	tuator holding force	1×10^{6} switching cycles 1×10^{5} switching cycles
B10d (up to) ${ }^{\text {(1) }}$		2 Mill.
Short-circuit protection		Fuse 6 A gL/gG
Protection class		II, Insulated
Ambient temperature		$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Protection class		IP65 conforming to IEC/EN 60529
Type of connection		Screw connections
Conductor cross sections		Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$
Enclosure		Thermoplastic, glass fibre-reinforced (UL94-V0)
Cable entry		M16 1.5
Standards		
VDE 0660 T100, DIN EN 60947-1, IEC 60947-1 VDE 0660 T200, DIN EN 60947-5-1, IEC 60947-5-1		

SKI

The SKI is the slimline version of a safety switch with a separate actuator. It is based on the BERNSTEIN I88 family. Its dimensions, not including the actuating head, correspond to EN 50047.

The actuating head is rotary mounted and has two actuator openings. The SKI safety switch is predestined for installation on section structures and in applications with confined installation conditions. Compared to the SKT, it offers more connection space for the wiring and variants with up to three switching contacts available.

Other advantages of this series include:

- Integrated eject function (FE):

The actuator is ejected if the door is not locked securely. Consequently, the safety contact is opened, thus preventing the machine from starting up. In addition, this function makes it apparent that the door still needs to be locked.

- Actuating force (up to $\mathbf{5 0} \mathbf{N}$):

The standard actuating force is 10 N . Depending on the switch variant, an actuating force of 50 N can also be selected. In many applications, hatches and doors need to be secured to prevent them from being opened unintentionally. This is achieved by means of bolts, fasteners or other latching mechanisms. The SKI safety switch should be selected for applications requiring increased actuating force.

- Universal radius actuator (MRU):

The MRU actuator is ideally suited for applications where the installation conditions severely restrict the actuating travel or radius. It has an adjustable actuating radius in the horizontal and vertical plane.

$\mathrm{R}_{\text {min }}$ in setting directions 50 mm
Actuating forces FE to FI50

Technical data

Electrical data		
Rated insulation voltage	U_{i} max.	250 V AC
Rated operating voltage	$\mathrm{U}_{\mathrm{e}} \mathrm{max}$.	240 V
Conventional thermal current (up to) ${ }^{6}$	$I_{\text {the }}$	10 A
Utilization category (up to) ${ }^{(1)}$		AC-15, $\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$
Mechanical data		
Switching frequency		$\leq 30 / \mathrm{min}$.
Mechanical service life Standard Mechanical service life encreased	uator holding force	1×10^{6} switching cycles 1×10^{5} switching cycles
B10d (up to) ${ }^{(1)}$		2 Mill.
Short-circuit protection		Fuse $6 \mathrm{AgL} / \mathrm{gG}$
Protection class		II, Insulated
Ambient temperature		$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Protection class		IP65 conforming to IEC/EN 60529
Type of connection		Screw connections
Conductor cross sections		Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$
Enclosure		Thermoplastic, glass fibre-reinforced (UL94-V0)
Cable entry		$1 \times \mathrm{M} 20 \times 1.5$
Standards		
VDE 0660 T100, DIN EN 60947-1, IEC 60947-1 VDE 0660 T200, DIN EN 60947-5-1, IEC 60947-5-1		

Safety Switches with Separate Actuator

SK

The SK safety position switch is an industry standard and can be used in virtually any application.

Thanks to design safety features conforming to VDE 0660 T200, IEC 60947-5-1 and the test regulations GS-ET 15, the SK is particularly suitable for personal protection applications. Its versatility is enhanced by the variable actuator head and two actuator openings.

Other decisive advantages include:

- Different actuating forces:

Corresponding to your specific application, in addition to the standard 10 N , you can also choose an actuating force of 5,20 or 30 N .
Actuating forces from 30 to 100 N can be realised with the aid of additional components that are mounted on the outside of the switch.

- Anti-tamper facility:

The switching system is protected by multiple coding to ensure enhanced safety of your application.

- Outstanding handling:

With the two slots you can easily adjust the SK safety switch and lock it in position by means of the two holes accessible from the top or the two holes accessible from the front. The switch can be wired from three different sides. A transparent cover prevents foreign particles from entering the contact space while connecting the power supply cable.

Technical data

SKC

In terms of lengths, the SKC safety position switch is the 15 mm shorter variant of the SK. This makes it the right choice for confined installation conditions.

The SKC otherwise offers the same advantages as the SK: Industrial standard with particular emphasis on safety, personal protection and a variable actuator head with two actuator openings.

Other decisive advantages include:

- Different actuating forces:

Corresponding to your specific application, in addition to the standard 10 N , you can also choose an actuating force of $5,20,30$ or 50 N .
Actuating forces from 30 to 100 N can be realised with the aid of additional components that are mounted on the outside of the switch.

- Anti-tamper facility:

The switching system is protected by multiple coding to ensure enhanced safety of your application.

- Outstanding handling:

With the two slots you can easily adjust the SKC safety switch and lock it in position by means of the two holes accessible from the top or the two holes accessible from the front. The switch can be wired from three different sides. A transparent cover prevents foreign particles from entering the contact space while connecting the power supply cable.

$\mathrm{R}_{\text {min }} 150 \mathrm{~mm}$ (5.9")
Actuator: Metal

Technical data

Safety Switches with Separate Actuator

SKT

SKI

Switching operation
1 NC / 1 NO contact

2 NC contacts

2 NC / 1 NO contact
Overlapping

Approvals
Standard High actuating force Radius actuation

6016419059
SKT-U1Z M3

6016469066

SKT-A2Z M3

Standard

6016819052
SKI-U1Z M3
6016819139 6016819123 SKI-U1Z FI50 M3 SKI-U1Z MRU

(16) © ©

Special features / variants

 (on request)- Replacement actuator for: 3112850340

Special features / variants (on request)

- Replacement actuator for: Standard High actuating force Radius actuation

3112850340
3112850340 3911452058

SKC

Standard High actuating force Radius actuation

6016169039	$\mathbf{6 1 1 6 1 6 9 0 1 6}$	6016169087
SKC-A1Z M	SKC-A1Z F30 M	SKC-A1Z MRU

©

Special features / variants

(on request)

- 50 N and 100 N actuating force on request
- Replacement actuator for: Standard

3911452116 High actuating force 3911451914 3911452058

Standard	High actuating force	Radius actuation
6016119016	$\mathbf{6 1 1 6 1 1 9 1 0 9}$	$\mathbf{6 0 1 6 1 1 9 0 8 4}$
SK-U1Z M	SK-U1Z F30 M	SK-U1Z MRU

$\mathbf{6 0 1 6 1 6 9 0 3 6}$	$\mathbf{6 0 1 6 1 6 9 0 5 3}$	$\mathbf{6 0 1 6 1 6 9 0 8 5}$
SK-A2Z M	SK-A2Z F30 M	SK-A2Z MRU

${ }^{(1)}{ }^{-1}$
(CC)

Special features / variants

(on request)

- 100 N actuating force on request
- Replacement actuator for:

Standard
High actuating force 3911451914 Radius actuation 3911452058

Safety Switches with Separate Actuator

Switch with VTW, VTU, VT actuator

These position switches of the tried-and-tested switch families I88, ENK, ENM2 and GC correspond to Type 2.

This means that you can use Type 1 and Type 2 position switches corresponding to your applications while using one family of switches.

This results in many advantages:

- Standardisation:

Switches of one family have the same mounting dimensions and the same electrical properties.

- Reduced costs:

II88, ENK, ENM2 and GC are used in large quantities. This not only reflects the quality of the products but also means lower prices compared to special designs used in small quantities.

Variable VTU head

Repositioning the actuator head either in horizontal or vertical direction results in 8 approach actuator directions.

Safety Switches with Separate Actuator

Special features / variants

(on request)

- All actuators specified under "Safety Switches with Separate Actuator and Latching Device (SLK/SLM)" can be used for these switches

Special features / variants

(on request)

- All actuators specified under "Safety Switches with Separate Actuator and Latching Device (SLK/SLM)" can be used for these switches

GC VT

Standard
High actuating force

6121100555
GC-U1Z VT 90GR

6116769064

GC-A2Z VT 90GR

Replacement actuator: 3912001275

Special features / variants
(on request)

Safety Switches with Separate Actuator and Interlock

SLK

Machines that continue running after being switched off are often part of automated production processes. Safety guards prevent operator access and must therefore be kept closed until the hazards posed by machine movement have ceased.

Safety position switches with interlock function ensure that safety gates, safety doors and other protective guards remain closed for as long as a hazardous situation exists.

In production processes safety position switches have three main tasks:

- Enabling the machine / process when the safety guard is closed and interlocked
- Disabling the machine / process when the safety guard is opened
- Position monitoring of the safety guard and interlock

The SLK / SLM safety position switches with separate actuators and interlock enable the user to realise locking systems conforming to EN 1088, EN ISO 12100-1, 12100-2 and since 29.12.2009 to the compulsory Machinery Directive 2006/42/EC.

System description

SLK / SLM safety position switches with interlock function are available in versions with spring force locking action and magnetic force locking action. The separate actuator is connected formfit with the safety guard. It transfers the locking force to the safety guard and monitors its position. Thanks to its triple coding, the separate actuator ensures a high degree of antitamper security. The interlock facility in association with the SLK / SLM safety position switches is integrated in the switch enclosure. To lock the actuator in connection with a switching mechanism, the required interlock is achieved by means of a spring mechanism in the spring force locked version and by an electromagnet in the magnetic force locked version.

Locking principle

Spring force (closed-circuit current)

The interlock is activated when the actuator is fully inserted. The interlock is released by energising the electromagnet, allowing the safety guard to be opened.

Magnetic force (working current)

The interlock is deactivated when the electromagnet is de-energised in the event of a power failure. This allows the safety guard to be opened.

Product advantages

- Two independent safety circuits ensure reliable integration
- With two contacts, circuit 1 monitors the actuator
- With two contacts, circuit 2 monitors the interlock The contact configuration is variable and may deviate from the selection table if required.
- Two different operating voltages for universal integration:
- 24 V AC / DC
- $110 \mathrm{~V} / 230 \mathrm{~V}$ AC
- Rotary actuating head $\left(4 \times 90^{\circ}\right)$ as well as horizontal and vertical actuation ensure complete flexibility in use
- Compact design with short overall size of only 170 mm
- Innovative installation with spring-loaded terminals
- Function conforming to GS ET 19, EN 60 204-1, EN 60 947-1 and EN 60 947-5-1

Safe operation

The stainless steel actuator ensures safe and reliable operation. Its coding prevents tampering and bypassing the system "in an easier way". The radius actuator is ideal for monitoring smaller safety gates. It can be preset horizontally or vertically and is also made from stainless steel.

Flexible in use

The SLK safety switch can be actuated in a horizontal and vertical direction. Prior to installation it is preset by simply repositioning the head section. This flexibility in installation is achieved by positioning the actuator head in steps of $4 \times 90^{\circ}$.

New symbol according to ISO 14119 for the interlocking contact:

Contacts labelled with this symbol in the switching travel diagram in the operating and installation instructions are safely positively driven contacts which monitor the interlocking position.

Innovative installation

The SLK is electrically connected safely and reliably by means of terminals. Spring loaded terminals are used, into which the wires with ferrules can be inserted without the need for tools. The fact that the connection compartment is separate from the functional parts contributes to ensuring secure and reliable connection. The connection compartment conforms to protection class IP67.

Safety Switches with Separate Actuator and Interlock

SLK

Product selection

Article number	Designation	Locking action	Supply voltage	Contacts Actuator	Interlock	Additional function
6018119045	SLK-F-UC-55-R1-A0-L0-0	Spring	24 Volt AC / DC	1NC/1NO	1NC / 1NO	Auxiliary release
6018119066	SLK-F-UC-55-R1-A0-L1-0	Spring	24 Volt AC / DC	1NC/1NO	1NC / 1NO	Auxiliary release, LED
6018169054	SLK-F-UC-22-R1-A0-L0-0	Spring	24 Volt AC / DC	2 NC	2 NC	Auxiliary release
6018169050	SLK-F-UC-25-R1-A0-L0-0	Spring	24 Volt AC / DC	2 NC	1NC / 1NO	Auxiliary release
6018169068	SLK-F-UC-25-R1-A0-L1-0	Spring	24 Volt AC / DC	2 NC	1NC / 1NO	Auxiliary release, LED
6018119061	SLK-F-UC-55-R2-A0-L0-0	Spring	24 Volt AC / DC	1NC/1NO	1NC / 1NO	Emergency release
6018169055	SLK-F-NC-22-R1-A0-L0-0	Spring	$110 / 230$ AC	2 NC	2 NC	Auxiliary release
6018119046	SLK-F-NC-55-R1-A0-L0-0	Spring	110/230 AC	1NC/1NO	1NC / 1NO	Auxiliary release
6018119067	SLK-F-NC-55-R1-A0-L1-0	Spring	$110 / 230$ AC	$1 \mathrm{NC} / 1 \mathrm{NO}$	1NC / 1NO	Auxiliary release, LED
6018169051	SLK-F-NC-25-R1-A0-L0-0	Spring	110/230 AC	2 NC	1NC / 1NO	Auxiliary release
6018169069	SLK-F-NC-25-R1-A0-L1-0	Spring	110/230 AC	2 NC	1NC / 1NO	Auxiliary release, LED
6018119047	SLK-M-UC-55-RO-AO-LO-0	Magnet	24 Volt AC / DC	1NC/1NO	1NC / 1NO	
6018169052	SLK-M-UC-25-RO-AO-LO-0	Magnet	24 Volt AC / DC	2 NC	1NC / 1NO	
6018169056	SLK-M-UC-22-RO-AO-LO-0	Magnet	24 Volt AC / DC	2 NC	2 NC	
6018119048	SLK-M-NC-55-RO-AO-LO-0	Magnet	$110 / 230$ AC	$1 \mathrm{NC} / 1 \mathrm{NO}$	1NC / 1NO	
6018169053	SLK-M-NC-25-RO-AO-LO-0	Magnet	110/230 AC	2 NC	1NC/ 1NO	
6018169057	SLK-M-NC-22-RO-AO-LO-0	Magnet	$110 / 230$ AC	2 NC	2 NC	

Technical data		Spring 24 Volt AC / DC	$\begin{gathered} \text { Spring } \\ 110 / 230 \mathrm{AC} \end{gathered}$	Magnet 24 Volt AC / DC	$\begin{gathered} \text { Magnet } \\ 110 / 230 \text { AC } \end{gathered}$
Electrical data					
Rated insulation voltage	u_{i}	250 V	250 V	250 V	250 V
Utilization category		AC-15, $\mathrm{U}_{\mathrm{e}} / \mathrm{Ie}_{\mathrm{e}} 230 \mathrm{~V} / 2.5 \mathrm{~A}$	AC-15, $\mathrm{U}_{\mathrm{e}} / \mathrm{Ie}_{\mathrm{e}} 230 \mathrm{~V} / 2.5 \mathrm{~A}$	AC-15, $\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 230 \mathrm{~V} / 2.5 \mathrm{~A}$	AC-15, $\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 230 \mathrm{~V} / 2.5 \mathrm{~A}$
Conventional thermal current		5 A	5 A	5 A	5 A
Short-circuit protection		4 AgL	4 AgL	4 AgL	4 AgL
Protection class		II, Insulated	II, Insulated	II, Insulated	II, Insulated
Electromagnet					
Duty factor		100 \% ED (an E1; E2)	100% ED (an E1; E2)	100% ED (an E1; E2)	100% ED (an E1; E2)
Thermal class		F (155 ${ }^{\circ} \mathrm{C}$)			
Switch-on power		12 VA (0.2 s)	$65 \mathrm{VA}(0.1 \mathrm{~s})$	$12 \mathrm{VA}(0.2 \mathrm{~s})$	$65 \mathrm{VA}(0.1 \mathrm{~s})$
Continuous power		4.4 VA	8 VA	4.4 VA	8 VA
Mechanical data					
Enclosure		Thermoplastic GV (UL94-VO)	Thermoplastic GV (UL94-V0)	Thermoplastic GV (UL94-V0)	Thermoplastic GV (UL94-VO)
Cover		Thermoplastic GV (UL94-V0)	Thermoplastic GV (UL94-V0)	Thermoplastic GV (UL94-V0)	Thermoplastic GV (UL94-V0)
Actuator		Thermoplastic GV / Zn-GD			
Ambient temperature		$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			
Switching function		2 NC contacts, 2 NO contacts	2 NC contacts, 2 NO contacts	4 NC contacts	2 NC contacts, 2 NO contacts
Switching principle		4 Slow-action contacts	4 Slow-action contacts	4 Slow-action contacts	4 Slow-action contacts
Mechanical service life		$\begin{array}{\|l\|} \hline 1 \times 10^{6} \text { switching cycles } \\ \text { (max. } 600 \text { switching cycles / } \text {) } \end{array}$	$\begin{array}{\|l} 1 \times 10^{6} \text { switching cycles } \\ (\text { max. } 600 \text { switching cycles } / \mathrm{h}) \end{array}$	1×10^{6} switching cycles (max. 600 switching cycles / h)	$\begin{array}{\|l} 1 \times 10^{6} \text { switching cycles } \\ \text { (max. } 600 \text { switching cycles / } \text {) } \end{array}$
B10d		2 mill.	2 mill.	2 mill.	2 mill.
Minimum actuating radius	$\mathrm{R}_{\text {min }}$	See datasheet, actuator	See datasheet, actuator	See datasheet, actuator	See datasheet, actuator
Approach speed V	$\mathrm{V}_{\text {max }}$	$0.5 \mathrm{~m} / \mathrm{s}$			
Mounting		4xM5	4x M5	$4 \times \mathrm{M} 5$	4xM5
Cross sections		0.5-1.5 mm ${ }^{2}$	$0.5-1.5 \mathrm{~mm}^{2}$	$0.5-1.5 \mathrm{~mm}^{2}$	0.5-1.5 mm ${ }^{2}$
Type of connection		Cage clamp terminal	Cage clamp terminal	Cage clamp terminal	Cage clamp terminal
Cable entry		$3 \times \mathrm{M} 20 \times 1.5$			
Weight		$\approx 0.34 \mathrm{~kg}$	$\approx 0.30 \mathrm{~kg}$	$\approx 0.30 \mathrm{~kg}$	$\approx 0.35 \mathrm{~kg}$
Protection class		IP67 conforming to IEC/EN 60529			
Installation position		Any	Any	Any	Any
Locking principle		Spring force	Spring force	Magnetic force	Magnetic force
Latching force	FZh	$\leq 1500 \mathrm{~N}$ to GS-ET-19			

[^1]
Notes

Safety Switches with Separate Actuator and Interlock

SLM

Product advantages

- Highly resistant in harsh industrial environments and with compact enclosure for space-saving installation
- Triple-coded actuator with high anti-tamper security
- Approach direction of actuator easily changed in 90° steps (repositioning only possible with actuator inserted)
- Entire function unit encapsulated on the inside
- Separate connection compartment for safe wiring at contact strip
- Two independent safety circuits ensure reliable integration
- With two contacts, circuit 1 monitors the actuator
- With two contacts, circuit 2 monitors the interlock
- The contact configuration is variable and may deviate from the selection table if required
- Integrated protective circuit avoids polarity reversal and voltage peaks
- Function conforming to VDE 0660 Part 200, EN 60 947-5-1 and GS ET 19
- The SLM safety switches are supplied as standard with actuator A1

Options

- Individual contact configuration
- Radius actuator for actuating radii of less than 400 mm
- Auxiliary release
- Two independent safety circuits ensure reliable integration
- Solutions to customer specifications

Product selection

Article number	Designation	Locking action	Contacts Actuator	Interlock	Supply voltage	Additional function
$\mathbf{6 0 1 7 1 1 9 0 2 0}$	SLM-FVTW 24DC-55-AR	Spring	$1 \mathrm{NC} / 1 \mathrm{NO}$	$1 \mathrm{NC} / 1 \mathrm{NO}$	24 Volt DC	Auxiliary release
$\mathbf{6 0 1 7 1 6 9 0 6 7}$	SLM-FVTW 24DC-22-AR	Spring	2 NC	2 NC	24 Volt DC	Auxiliary release
$\mathbf{6 0 1 7 1 1 9 0 4 7}$	SLM-FVTW 24DC-55-KR	Spring	$1 \mathrm{NC} / 1 \mathrm{NO}$	$1 \mathrm{NC} / 1 \mathrm{NO}$	24 Volt DC	With key release
$\mathbf{6 1 1 7 1 6 9 0 2 3}$	SLM-FVTW 24AC-22-AR	Spring	2 NC	2 NC	24 Volt AC	Auxiliary release
$\mathbf{6 0 1 7 1 1 9 0 3 2}$	SLM-FVTW 120AC-55-AR	Spring	$1 \mathrm{NC} / 1 \mathrm{NO}$	$1 \mathrm{NC} / 1 \mathrm{NO}$	120 Volt AC	Auxiliary release
$\mathbf{6 0 1 7 1 1 9 0 2 2}$	SLM-FVTW 230AC-55-AR	Spring	$1 \mathrm{NC} / 1 \mathrm{NO}$	$1 \mathrm{NC} / 1 \mathrm{NO}$	230 Volt AC	Auxiliary release
$\mathbf{6 0 1 7 1 6 9 0 6 6}$	SLM-MVTW 24DC-22	Magnet	2 NC	2 NC	24 Volt DC	
$\mathbf{6 0 1 7 1 1 9 0 2 3}$	SLM-MVTW 24DC-55	Magnet	$1 \mathrm{NC} / 1 \mathrm{NO}$	$1 \mathrm{NC} / 1 \mathrm{NO}$	24 Volt DC	
$\mathbf{6 0 1 7 1 1 9 0 2 4}$	SLM-MVTW 230AC-55	Magnet	$1 \mathrm{NC} / 1 \mathrm{NO}$	$1 \mathrm{NC} / 1 \mathrm{NO}$	230 Volt AC	

Technical data	Spring 24 Volt DC	Spring 120 Volt AC	Spring 230 Volt AC	Magnet 24 Volt DC	$\begin{gathered} \text { Magnet } \\ 230 \text { Volt AC } \end{gathered}$
Electrical data					
Rated insulation voltage U_{i}	250 V				
Utilization category	AC-12, U $\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 250 \mathrm{~V} / 10 \mathrm{~A}$ AC-15, Ue $/ \mathrm{le}_{\mathrm{e}} 230 \mathrm{~V} / 4 \mathrm{~A}$	AC-12, $\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 250 \mathrm{~V} / 10 \mathrm{~A}$ $\mathrm{AC}-15, \mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}} 230 \mathrm{~V} / 4 \mathrm{~A}$	AC-12, $\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 250 \mathrm{~V} / 10 \mathrm{~A}$ AC-15, Ue $/ \mathrm{l}_{\mathrm{e}} 230 \mathrm{~V} / 4 \mathrm{~A}$	AC-12, $\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 250 \mathrm{~V} / 10 \mathrm{~A}$ AC-15, Ue $/ \mathrm{I}_{\mathrm{e}} 230 \mathrm{~V} / 4 \mathrm{~A}$	AC-12, U $/ I_{\mathrm{e}} 250 \mathrm{~V} / 10 \mathrm{~A}$ AC-15, Ue $/ \mathrm{le}_{\mathrm{e}} 230 \mathrm{~V} / 4 \mathrm{~A}$
Conventional thermal current $\mathrm{I}_{\text {the }}$	5 A	5 A	5 A	5 A	5 A
Short-circuit protection	$10 \mathrm{AgL} / \mathrm{gG}$				
Protection class	1	1	1	1	1
Electromagnet					
Duty factor	100 \% ED				
Thermal class	B ($130{ }^{\circ} \mathrm{C}$)	B ($130{ }^{\circ} \mathrm{C}$)	B ($130^{\circ} \mathrm{C}$)	B ($130^{\circ} \mathrm{C}$)	B ($130^{\circ} \mathrm{C}$)
Continuous power	5.2 W				
Operating voltage	24 VDC	120 V AC	230 V AC	24 VDC	230 VAC
Mechanical data					
Enclosure	Al die-cast				
Cover	Sheet aluminium				
Actuator	ZN die-cast	Al die-cast	Al die-cast	Al die-cast	Al die-cast
Ambient temperature	$-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$				
Switching principle	4 Slow-action contacts				
Mechanical service life	1×10^{6} switching cycles				
B10d	2 mill.				
Minimum actuating radius $\mathrm{R}_{\text {min }}$	400 mm				
Approach speed $\quad \mathrm{V}_{\text {max }}$	$1.5 \mathrm{~m} / \mathrm{s}$				
Mounting	$3 \times \mathrm{M} 5$				
Cross sections	$0.5-1.5 \mathrm{~mm}^{2}$				
Type of connection	Screws	Screws	Screws	Screws	Screws
Cable entry	$2 \times \mathrm{M} 20 \times 1.5$				
Weight	$\approx 0.81 \mathrm{~kg}$				
Protection class	IP67 conforming to IEC/EN 60529	IP67 conforming to IEC 529			
Installation position	Any	Any	Any	Any	Any
Locking principle	Spring force	Spring force	Spring force latching	Spring force latching	Spring force latching
Latching force	$\leq 1000 \mathrm{~N}$ to GS-ET 19				

Approvals:

Safety Switches with Separate Actuator and Interlock

Product selection SLK, SLM, ENK-VTU, ENM2-VTW

Article number	Designation
3911702228	Actuator A1

Article number	Designation
3911702231	Actuator A4

Mechanical data	
Actuator	Steel/PA
Enclosure	$\mathrm{GD}-\mathrm{Zn}$
Minimum actuating radius	$\mathrm{R}_{\text {min }}$
Repositioning of spring-mounted actuator by 450 mm	

Article number	Designation
3911702229	Actuator A2

Article number	Designation
3911702230	Actuator A3

Mechanical data	
Enclosure / Actuator	Steel/PA
Minimum actuating radius	$\mathrm{R}_{\text {min }}$
Repositioning of spring-mounted actuator by $4 \times 90^{\circ}$ in not mounted state.	
WAF 2.5 Allen key, supplied	

Mechanical data	
Enclosure / Actuator	Steel/PA
Dust cap	Elastomer CR
Minimum actuating radius	$\mathrm{R}_{\text {min }}$
Repositioning of spring-mounted actuator by $4 \times 90^{\circ}$ in not mounted state.	

Article number	Designation
$\mathbf{3 9 1 1 7 0 2 2 3 4}$	Actuator A7

Mechanical data

Actuator		Steel/PA
U-section		Steel
Minimum actuating radius	$\mathrm{R}_{\text {min }}$	400 mm

Safety Switches for Hinged Protective Equipment

Safety Hinge Switch - SHS3

With the SHS3 safety hinge switch we present the logical further development of the SHS series and a solution that makes it unnecessary to replace the safety hinge switch when equipment such as safety gates are damaged as the result of mechanical stress, such as after being bumped by a forklift truck for instance. Even after the switching point has been set, if need be, the user can now correct the hinge setting with the aid of the integrated fine adjustment system. The SHS3 hinge switch is reusable even when the entire system needs to be converted: With the aid of a change kit, the user can redefine the switching point without using the high protection rating of IP67 / IP69 K.

The SHS3 has a swivel range from 0° to 270°. The switching point is also freely selectable within this range.

The SHS3 hinge switch has virtually no limits in terms of its installation flexibility. Not only does the SHS3 enable front and interior installation, right-hinged or left-hinged mounting or freely selectable direction of electric connection, but thanks to the switching point which can be set in an angle range of 270°, this hinge switch can also be installed in places that were previously not possible.

Safe:

With suitable system layout, the switch can be used up to performance level e. Following variants are available:

- 2 positive opening safety contacts
- 2 positive opening safety contacts with additional normally-open signalling contact
- With integrated AS interface Safety at Work.

Flexible:

- Freely and repeatedly adjustable switching point
- Switching point freely adjustable by user over a range of 270°
- Uncomplicated re-adjustment even of set switching point by $\pm 1.5^{\circ}$ thanks to integrated fine adjustment system
- Slots for mounting on sections and welded structures
- In addition to the plug connection version, an SHS with fixed cable connection at the rear is also available
- Right and left hinged systems possible for optimum cable routing
- Mounting between sections while maintaining the required finger guard gap

Fast:

To connect the SHS3 even more efficiently, the two contacts are designed as normallyclosed contacts with Ultra-Lock technology, thus enabling connection with an M12 cable.

Reliable:

- The protection rating is IP67 / IP69 K
- The load-bearing hinge is made from stainless steel while the switching system is housed in a high quality plastic enclosure

Double hinge

Thanks to its two switching elements on one hinge, the BG (occupational health and safety)-approved variant of the SHS3 provides two independently adjustable switching points. This arrangement not only makes it possible to monitor the opening of a safety guard but also the direction of opening of swing doors.

On delivery, the SHS3 hinge switch allows for all possible settings. With your specific application you define and lock the safe status of the hinged safety equipment (the closed position) (Fig. 1).

The adjusting screw located in axial direction in the switching system is then tightened with the special bit supplied with the hinge switch. The arrangement of the adjusting screw makes it possible to adjust the switching point in all installation positions (Fig. 2+3)

After establishing a form-fit connection, a green ring in the gap between the stainless steel hinge and switch enclosure indicates that the switching point has been set correctly at a min. torque of $2 \mathrm{Nm} /+10 \%$ (Fig. 4).

A red ring at this point additionally indicates wear, e.g. caused by abrasive substances. With the same special bit you can not only freely adjust the switching point to suit your application but you can also change the mounting arrangement of your safety equipment from right-hinged to left-hinged (Fig. 5).

Fine adjustment

The set switching point can be subsequently varied by up to $\pm 1.5 \%$ by turning the adjusting screw in the corresponding direction (Fig. 6).

In many cases this fine adjustment makes it unnecessary to replace the switch or readjust the switching point due to mechanical deformation of the safety guard. The switching angle should generally be selected as small as possible.

Dimensioned drawings

SHS3...KA...

SHS3...KR...

Switching diagram

[^2]
Safety Switches for Hinged Protective Equipment

Product selection for die-cast zinc version

Article number	Designation	Switching contact	Max. switching voltage	Type of voltage	Type of connection and direction radial axial		Required cable coupling / type	Mounting
6019490050	SHS3Z-U15Z-KA5 R	2NC/1NO	230 V	AC/DC		Cable		Right
6019490051	SHS3Z-U15Z-KA5L	2NC/1NO	230 V	AC/DC		Cable		Left
6019490052	SHS3Z-U15Z-KR5 R	2NC/1NO	230 V	AC/DC	Cable			Right
6019490053	SHS3Z-U15Z-KR5 L	2NC/1NO	230 V	AC/DC	Cable			Left
6019490054	SHS3Z-U15Z-SA R	2NC/1NO	230 V	AC/DC		M12	D	Right
6019490055	SHS3Z-U15Z-SAL	2NC/1NO	230 V	AC/DC		M12	D	Left
6019490056	SHS3Z-U15Z-SR R	2NC/1NO	230 V	AC/DC	M12		D	Right
6019490063	SHS3Z-U15Z-SR L	2NC/1NO	230 V	AC/DC	M12		D	Left
6019490057	SHS3Z-U1Z-SA R	1NC/1NO	230 V	AC/DC		M12	E	Right
6019490058	SHS3Z-U1Z-SA L	1NC/1NO	230 V	AC/DC		M12	E	Left
6019490059	SHS3Z-U1Z-SR R	1NC/1NO	230 V	AC/DC	M12		E	Right
6019490060	SHS3Z-A2Z-SA R	2NC	230 V	AC/DC		M12	E	Right
6019490061	SHS3Z-A2Z-SA L	2NC	230 V	AC/DC		M12	E	Left
6019490062	SHS3Z-A2Z-SR R	2NC	230 V	AC/DC	M12		E	Right
6019490049	SHS3Z-HINGE							

Product selection for stainless steel version

Product selection for stainless steel version in IP69K

Article number	Designation	Switching contact	Max. switching voltage	Type of voltage	Type of radial	and direction axial	Required cable coupling / type	Mounting
6019390064	SHS3-U15Z-KA5-R-IPX	2NC/1NO	230 V	AC/DC		Cable		Right
6019390065	SHS3-U15Z-KA5-L-IPX	2NC/1NO	230 V	AC/DC		Cable		Left
6019390066	SHS3-U15Z-KR5-R-IPX	2NC/1NO	230 V	AC/DC	Cable			Right
6019390067	SHS3-U15Z-KR5-L-IPX	2NC/1NO	230 V	AC/DC	Cable			Left
6019390068	SHS3-7-KA5-IPX/7-KA5-IPX	$2 \times 2 \mathrm{NC} / 1 \mathrm{NO}$	230 V	AC/DC		Cable		Both sides

Electrical data		
Rated insulation voltage	U_{i} max.	250 V
Rated operating voltage	$U_{\text {e }}$ max.	230 V
Conventional thermal current	$\mathrm{I}_{\text {the }}$	5 A
Utilization category	$\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}}$	AC-15
Short-circuit protection		4 Ag
Protection class		III, Ins
Mechanical data		
Switch	PBT / Hinge G-X22 Cr Ni 17	
Ambient temperature	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (Connection cable installed)	
Mechanical service life	10^{6} switching cycles	
Switching frequency max.	max. 300 switching cycles/hour	
Mounting	$4 \times$ M6 Screws DIN EN ISO 7984	
B10d	2 mill.	
Type of connection	Fixed connection cable, $6 \times 0.75 \mathrm{~mm}^{2}$, minimum bending radius $=60 \mathrm{~mm}$	
Weight	approx. 0.7 kg (cable variant)	
Installation position	Any	
Protection class	IP67 conforming to IEC/EN 60529	
Switching angle	$\pm 3^{\circ}$ from setting point	
Positive opening angle	$\pm 6^{\circ}+2$	
Positive opening torque	1.5 Nm	
Mechanical load	$\mathrm{F}_{\mathrm{R} 1}=\max .1800 \mathrm{~N}, \mathrm{~F}_{\mathrm{R} 2}=\max .750 \mathrm{~N}, \mathrm{~F}_{\mathrm{A}}=\max .1800 \mathrm{~N}$	
Standards		
VDE 0660 T100, DIN EN 60947 VDE 0660 T200, DIN EN 60947		

Safety Switches for Hinged Protective Equipment

SHS3 Cable Type D

Article number	Designation	Cable length	Connector type	Number of pins	Special feature
$\mathbf{3 2 5 1 0 0 6 2 9 1}$	AN-KAB.SHS3 2M STRAIGHT	2 m	Straight	6	M12 BG version
$\mathbf{3 2 5 1 0 0 6 2 9 2}$	AN-KAB.SHS3 5M STRAIGHT	5 m	Straight	6	M12 BG version
$\mathbf{3 2 5 1 0 0 6 2 9 3}$	AN-KAB.SHS3 10M STRAIGHT	10 m	Straight	6	M12 BG version
$\mathbf{3 2 5 1 0 0 6 2 9 4}$					
$\mathbf{3 2 5 1 0 0 6 2 9 5}$	AN-KAB.SHS3 2M ELBOW	2 m	Elbow	6	M12 BG version
$\mathbf{3 2 5 1 0 0 6 2 9 6}$	AN-KAB.SHS3 5M ELBOW	5 m	Elbow	6	M12 BG version

Contact assignments, AC/DC versions

	(4)	$\begin{aligned} & 1=\text { White } \\ & 2=\text { Brown } \end{aligned}$	Core insulation/sheathing material:	PVC ($\varnothing 5.6$ mm)
	(5)		Moulding/contact carrier material:	PUR Elastollan R3000
		3 = Green	Max. rated voltage:	250 V AC
	(3) (6)	4 = Yellow	Max. current carrying capacity:	2.5 A (at $70^{\circ} \mathrm{C}$)
		5 = Grey	Min./max. temperature range:	$-5^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ (moved)
		6 = Pink		$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ (moved firmly)
			Cable configuration mm^{2} :	LiYwUL2517 6×0.34
			Protection class when assembled:	IP68

SHS3 Cable Type E

Article number	Designation	Cable length	Connector type	Number of pins	Special feature
$\mathbf{3 2 5 1 0 0 4 3 1 0}$	AN-KAB.SHS3 4P 2M STRAIGHT	2 m	Straight	4	M12 BG version
$\mathbf{3 2 5 1 0 0 4 3 1 1}$	AN-KAB.SHS3 4P 5M STRAIGHT	5 m	Straight	4	M12 BG version
$\mathbf{3 2 5 1 0 0 4 3 1 2}$	AN-KAB.SHS3 4P 10M STRAIGHT	10 m	Straight	4	M12 BG version
$\mathbf{3 2 5 1 0 0 4 3 1 3}$					
$\mathbf{3 2 5 1 0 0 4 3 1 4}$	AN-KAB.SHS3 4P 2M ELBOW	2 m	Elbow	M12 BG version	
$\mathbf{3 2 5 1 0 0 4 3 1 5}$	AN-KAB.SHS3 4P 5M ELBOW	5 m	Elbow	4	M12 BG version
$\mathbf{3 2 5 1 0 0 4 3 1 6}$	AN-KAB.SHS3 4P 10M ELBOW	10 m	Elbow	4	M12 BG version
$\mathbf{3 2 5 1 0 0 4 3 1 7}$	AN-KAB.SHS3 4P U.L. 2M STRAIGHT	2 m		4	
$\mathbf{3 2 5 1 0 0 4 3 1 8}$	AN-KAB.SHS3 4P U.L. 5M STRAIGHT	5 m	Straight	Ultra Lock BG version	
$\mathbf{3 2 5 1 0 0 4 3 1 9}$	AN-KAB.SHS3 4P U.L. 10M STRAIGHT	10 m	Straight	4	Ultra Lock BG version
$\mathbf{3 2 5 1 0 0 4 3 2 0}$		AN-KAB.SHS3 4P U.L. 2M ELBOW	2 m	Straight	4
$\mathbf{3 2 5 1 0 0 4 3 2 1}$	AN-KAB.SHS3 4P U.L. 5M ELBOW	5 m		4	Ultra Lock BG version

Contact assignments, AC/DC versions

Core insulation / sheathing material:	Heat resistant PVC UL 1731 / UL 2517 black
Moulding/contact carrier material:	APEX $7500-85$ / R3000 Elastollan R3000 neutral
Max. rated voltage:	250 V
Max. current carrying capacity:	4 A
Min. / max. temperature range:	At rest $-25^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
	Moved $-5^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Protection class when assembled:	IP68

Change kit for re-adjusting switching point

Article number	Designation
3991990161 SHS3 change kit Containing: 2 replacement caps 1 special bit 1 plastic ring	

Installation tool

Article number	Designation
1910000005	Bit holder $1 / 4^{\prime \prime}$ flexible stem

Notes

Safety Switches for Hinged Protective Equipment

Safety Hinge Switch - SHS

Illustration showing fixed pin and shearing bolt sheared off
(1) Position of connection variant 2,5 and 6.
(2) Position of connection variant 1,3 and 4.

Protective hoods and safety guards on machines such as gates in safety gate systems are often pivot mounted with hinges.

Since BERNSTEIN presented the world's first safety hinge switch SHS in 2002 it is hard to imagine modern production installations without it. It combines a hinge and safety switch in one single functional unit.

The design of the SHS safety hinge switch has been optimised to allow its effective use on aluminium section systems. Its shallow depth, even when fully opened, makes it ideally suited for use in constricted installation conditions on machines. Safety switches with separate actuators are often subjected to high mechanical stresses, especially when they are mounted on closing edges. The SHS hinge switch sets new standards. The safety guard is monitored directly in the hinge.

The concealed arrangement of the safety switch provides a high degree of protection against tampering. One or several SHS switches are be used depending on control requirements.

In many applications the conventional load bearing hinge can be replaced by a blank hinge with identical design features as the safety hinge. This has significant rationalisation benefits. The only parameter you need to take into account is the maximum extension of the hinged safety equipment that results from the switching angle and the permissible safe opening in the area of the closing edges. The SHS hinge switch provides maximum anti-tamper protection as, once set, the switching point can no longer be changed.

Safe:

- 2 SHS hinge switches, each equipped with a positively opening safety contact, allows you to configure a system up to performance level e

Flexible:

- The angle range extends from 0 to 225°
- A safety device ensures positive locking after the switch has been set
- In addition to the plug connection version, an SHS with fixed cable connection at the rear is also available

Fast:

- Plug connector and fixed cable connections are available for axial and radial (rear) connection
- An $\mathrm{AC} / \mathrm{DC}$ version (up to 250 V) or a DC version (up to 60 V) is available, depending on the configuration of the safety circuit

Reliable:

- A pressure die-cast zinc enclosure allows versatile use of the SHS switch in varied applications
- When used as a load bearing hinge, the SHS takes up loads of up to 750 N in axial direction and 1000 N in radial direction after the switching point has been finally set
- The protection rating is IP67

Technical data

Safety Switches for Hinged Protective Equipment

SHS Cable Type A

Article number	Designation	Cable length	Connector type	Number of pins	Special feature
$\mathbf{3 2 5 1 1 0 3 2 3 4}$	AN-KAB.SHS 5M AC STRAIGHT	5 m	Straight	3	AC/DC BG version
$\mathbf{3 2 5 1 1 0 3 2 3 6}$	AN-KAB.SHS 5M AC ELBOW	5 m	Elbow	3	AC/DC BG version

Contact assignments, AC/DC versions

1 = Green/yellow
2 = Black
3 = Blue

Core insulation / sheathing material:	PVC (UL)/PVC (UL)
Moulding / contact carrier material:	PUR (UL)/PUR (UL)
Max. rated voltage:	300 V AC
Max. current carrying capacity:	3 A
Min. / max. temperature range:	$-25^{\circ} \mathrm{C} /+70^{\circ} \mathrm{C}$
	$-13^{\circ} \mathrm{F} /+158^{\circ} \mathrm{F}$
Cable configuration mm^{2} :	3×0.5
Protection class when assembled:	IP67

SHS Cable Type B

Article number	Designation	Cable length	Connector type	Number of pins	Special feature
3251003221	AN-KAB.SHS 2M DC STRAIGHT	2 m	Straight	3	DC approval
3251003222	AN-KAB.SHS 5M DC STRAIGHT	5 m	Straight	3	DC approval
3251003223	AN-KAB.SHS 10M DC STRAIGHT	10 m	Straight	3	DC approval
3251003224	AN-KAB.SHS 2M DC ELBOW	2 m	Elbow	3	DC approval
3251003225	AN-KAB.SHS 5M DC ELBOW	5 m	Elbow	3	DC approval
3251003226	AN-KAB.SHS 10M DC ELBOW	10 m	Elbow	3	DC approval

Contact assignments, DC versions
$1=$ Brown
$2=-$
$3=$ Blue
$4=$ Black

Core insulation / sheathing material:	PVC/PVC
Moulding / contact carrier material:	PUR/PUR
Max. rated voltage:	$60 \mathrm{~V} \mathrm{AC/75} \mathrm{~V} \mathrm{DC}$
Max. current carrying capacity:	1.5 A
Min. / max. temperature range:	$-25^{\circ} \mathrm{C} /+70^{\circ} \mathrm{C}$
	$-13^{\circ} \mathrm{F} /+158^{\circ} \mathrm{F}$
Cable configuration $\mathrm{mm}^{2}:$	3×0.34
Protection class when assembled:	IP 67

SHS Cable Type C

Article number	Designation	Cable length	Connector type	Number of pins	Special feature
$\mathbf{3 2 5 1 0 0 4 2 1 9}$	AN-KAB.SHS 5M AC STRAIGHT		Straight	4	AC/DC-approval
$\mathbf{3 2 5 1 0 0 4 2 2 0}$	AN-KAB.SHS 5M AC ELBOW	5 m	Elbow	4	AC/DC-approval

Contact assignments, AC/DC versions

Core insulation / sheathing material:	PVC/PVC
Moulding / contact carrier material:	PUR/Nylon 6.6
Max. rated voltage:	300 V AC
Max. current carrying capacity:	4.0 A
Min. / max. temperature range:	$-5^{\circ} \mathrm{C} /+70^{\circ} \mathrm{C}$
Cable configuration mm^{2} :	$-13^{\circ} \mathrm{F} /+158^{\circ} \mathrm{F}$
Protection class when assembled:	4×0.34

Notes

Safety Switches for Hinged Protective Equipment

I88 VKS, -VKW, -AHDB; GC VKS, -VKW; Ti2 AHDB

Safety switches for hinged protective equipment

These switches are suitable for applications where SHS switches cannot be used. They are used for safety monitoring of safety gates, safety guards and protective equipment. Two different types of actuator are available for this type of safety switch. The actuators also differ in terms of their attachment to the safety guards.

The AHDB actuator is available in the Ti2 and 188 families. The switch is attached in such a way that a spindle on the safety guard or on the hinge can enter the hole in the safety switch. The safety contact is opened by turning the spindle when opening the safety guard. The switch can be actuated in both directions without a limit stop.

The VKS and VKW actuators are part of the I88 and GC families. The switch is mounted next to the safety guard. The lever fixture is mounted on the safety guard and opens the safety contact as it moves. The integrated longitudinal guide compensates for different pivot radii.

Two different actuator functions are available to facilitate use in varied applications:

- VKS with vertical setting

The safety contact is opened when the lever fixture is moved out of its vertical setting in one of the two possible pivot directions.

- VKW with horizontal setting

The safety contact is opened as the lever fixture moves out of its horizontal setting. A distinction is made between VKW RE (right) and VKW LI (left) in connection with 188 switches. This designation makes it possible to identify whether the switch can be mounted on the right-hand or left-hand side of the safety guard. The GC family only contains switches for mounting on the left-hand side.

Both variants allow maximum pivot movements of 180°.

Technical data	Ti2 AHDB	I88 AHDB	I88	GC

Electrical data

Rated insulation voltage	U_{i}		250 V AC	250 V AC	250 V AC	400 V AC
Conventional thermal current	$\mathrm{I}_{\text {the }}$	$\begin{aligned} & \text { U1Z } \\ & \text { A2Z } \end{aligned}$	$10 \mathrm{~A}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 5 \mathrm{~A} \end{aligned}$
Rated operating voltage	$U_{\text {e }}$		240 V	240 V	240 V	240 V
Utilization category		$\begin{aligned} & \mathrm{U} 1 \mathrm{Z} \\ & \mathrm{~A} 2 \mathrm{Z} \end{aligned}$	$\mathrm{AC} 15,240 \mathrm{~V} / 3 \mathrm{~A} \text {, }$	AC-15, $\mathrm{U}_{\mathrm{e}} / \mathrm{Ie}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$ $\mathrm{AC}-15, \mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 1.5 \mathrm{~A}$	AC-15, U $\mathrm{U}_{\mathrm{e}} / \mathrm{Ie}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$ $\mathrm{AC}-15, \mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 1.5 \mathrm{~A}$	$\text { AC-15, } \mathrm{U}_{\mathrm{e}} / \mathrm{le}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$
Positive opening action NC contacts	Θ		As per IEC/EN 60947-5-1, Addendum K			
Short-circuit protection			Fuse 6A gL/g	Fuse 10A gL/g	Fuse 10A gL/g	Fuse 10A gL/g
Protection class			II, Insulated	II, Insulated	II, Insulated	I

Mechanical data

Enclosure	PBT, glass fibre-reinforced	Thermoplastic, glass fibre-reinforced (UL 94-V0)	Thermoplastic, glass fibre-reinforced (UL 94-V0)	Aluminium pressure die-casting
Cover	PA6.6, black	Thermoplastic, glass fibre-reinforced (UL 94-V0)	Thermoplastic, glass fibre-reinforced (UL 94-V0)	Sheet aluminium
Actuation	Axis lever enclosure, lever (metal)	Axis lever enclosure, lever (metal)	Lever (metal)	Lever (steel)
Ambient temperature	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$			
Mechanical service life	1×10^{6} switching cycles			
B10d	2 mill.	2 mill.	2 mill.	2 mill.
Switching frequency	$\leq 50 / \mathrm{min}$.	$\leq 50 / \mathrm{min}$.	$\leq 50 / \mathrm{min}$.	$\leq 20 / \mathrm{min}$.
Mounting	$2 \times$ M4 or $2 \times$ M5 fixed positioning for safety applications	$2 \times \mathrm{M} 4$	$2 \times \mathrm{M} 4$	$2 \times \mathrm{M} 4$
Type of connection	Screw connections	Screw connections	Screw connections	Screw connections
Conductor cross sections	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule 0.5-1.5	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule 0.5-1.5	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule 0.5-1.5	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule 0.5-1.5
Cable entry	$1 \times \mathrm{M} 20 \times 1,5$			
Installation position	Any	Any	Any	Any
Protection class	IP65 as per EN 60529			

Standards

VDE 0660 T100, DIN EN 60947-1, IEC 60947-1

VDE 0660 T200, DIN EN 60947-5-1, IEC 60947-5-1
(1) Depending on switching system. See Table on Pages 72 - 75.

Safety Switches for Hinged Protective Equipment

188 VKS

(64)
©

Replacement actuator: -

Special features / variants
(on request)

Replacement actuator: -

Special features / variants
(on request)

Safety Switches for Hinged Protective Equipment

2 NO contacts

Approvals

(1)
©

Replacement actuator: 3912001277

Special features / variants
(on request)

(16)
©

Replacement actuator: 3912001278

Special features / variants
(on request)

The SRF (Safety RFID) is a non-contact safety sensor, that monitors moveable safety guards, such as doors, flaps and hoods. This particularly compact sensor protects employees from injuries by shutting down or not starting up machines when the safety guard is not properly closed.

With its innovative diagnostic system, the SRF makes safety circuits suitable for Industry 4.0.

The system provides a multitude of diagnostic data of each sensor, even in a series connection, to support smart production.

Diagnostic data is fed into the machine control system via I/O Link or alternatively displayed on a smartphone by way of NFC technology. In this way, 20 different diagnostic information of each sensor can be retrieved and made available.

This diagnostic data delivers cost-effective predictive maintenance in a simple way. Through its advanced fault recognition capability, costly machine shutdowns can be prevented.

This way, your machinery and plant will work even more efficiently!

Innovative

- New innovative Daisychain Diagnostics (DCD)
- Reading diagnostics information through Android smartphone via NFC interface
- Transmission of data via I/O Link interface
- Simple and specific maintenance thanks to pre-failure monitoring
- Cost reduction by eliminating machine downtimes
- Connecting the sensor information of six different diagnostic circuits
- Support of an energy-optimised application: Voltage levels known at any time

Safe

- Safe sensors in Cat. 4, PL e or SIL CL 3
- Safe serial connection of SRF up to PLe, Cat. 4 / SIL CL 3
- Coded and unique actuator

Versatile

- Protection class of IP69
- Local reset button
- Compact design
- Diagnostics system DCD
- PNP diagnostics
- Fault tolerant output
- Single and series connection possible
- Connection via M12 plug

Non-contact Safety Sensor SRF

Benefits and advantages SRF

- Cost-saving: thanks to a four-wire unshielded standard connection cable from sensor to sensor (1)
- Compact: small in size, flexible in use
- Safe: up to PL e - even in series connection, with high defeat protection (according to ISO 14119)
- Series connection of the sensors through internal safety electronics without compromising the safety level

Coding types

- Low coding level:

Coded sensor with only one possible code

- High coding level: Coded sensor with more than 1000 different codes
- Unique coding: High coding level - but no spare actuator accepted

Diagnostics (not safety related)

- PNP diagnostics:

Signalling contact as PNP NO output that indicates whether the safety guard is closed

- DCD System:

Detailed diagnostic system DCD that submits a complete status image of a sensor, even in series connection

Reset function

Local reset of the sensor to enable restart of the machine.

Fault tolerant outputs

The fault tolerant outputs prevent an unexpected machine stop and allow to run down the machine in a controlled manner.

This is how it works:
If an error is detected at one output, the sensor indicates this with a flash code -whilst simultaneously transmitting the information via the DCD system. After 20 minutes, the second still intact output, will switch off.

(5)BERNSTEIN

Benefits and advantages diagnostics

- Comprehensive diagnostics information for each sensor and for the entire system
- Diagnostic data simply retrievable
- Time and cost savings during commissioning, maintenance and fault investigation
- Protection against unexpected machine stops though pre-fault detection
- Display of diagnostic data on smartphones via NFC
- Simple troubleshooting through reading out the fault memory via NFC also in case of missing power supply

Non-contact Safety Sensor SRF

SRF for series connection

Article number	Designation	Unique	High coding level	Low coding level	PNP diagnostics	Daisychain diagnostics (DCD)	Reset input	M12 8-pin connection with 25 cm cable
6075685094	SRF-4/1/1-E0.25-U	x			X			X
6075685095	SRF-4/1/1-E0.25-H		x		X			x
6075685096	SRF-4/1/1-E0.25-L			x	x			x
6075685097	SRF-4/2/1-E0.25-U	x			X		x	x
6075685098	SRF-4/2/1-E0.25-H		x		x		X	X
6075685099	SRF-4/2/1-E0.25-L			x	x		x	x
6075685100	SRF-5/1/1-E0.25-U	x				X		x
6075685101	SRF-5/1/1-E0.25-H		x			X		X
6075685102	SRF-5/1/1-E0.25-L			x		x		x
6075685080	SRF-5/2/1-E0.25-U	x				x	X	x
6075685103	SRF-5/2/1-E0.25-H		x			x	x	x
6075685104	SRF-5/2/1-E0.25-L			x		x	X	x
6075687078	SRF-0	Actuator SRF, suitable for all coding levels (not included, please order separately)						

SRF for single connection

Article number	Designation	Unique	High coding level	Low coding level	PNP diagnostics	M12 5-pin connection with 25 cm cable	2 m cable with open cable end
6075685117	SRF-2/1/1-A2-U	x			x		X
6075685079	SRF-2/1/1-A2-H		X		x		X
6075685118	SRF-2/1/1-A2-L			X	x		X
6075685119	SRF-2/1/1-E0.25-U	x			x	x	
6075685120	SRF-2/1/1-E0.25-H		x		x	x	
6075685121	SRF-2/1/1-E0.25-L			x	x	x	
6075687078	SRF-0	Actuator SRF, suitable for all coding levels (not included, please order separately)					

Non-contact Safety Sensor SRF

Diagnostic module

Article number	Designation	Enclosure	Number of diagnostic circuits	Digital output	Interfaces		
6075619122	SRF DI-C-0/1-T	DIN rail housing 22.5 mm	1	-	x	x	x
6075619123	SRF DI-C-8/1-T	DIN rail housing 22.5 mm	1	8	x	x	x
6075619124	SRF DI-C-16/1-T	DIN rail housing 22.5 mm	1	16	x	x	x
6075619125	SRF DI6-C-0/1-T	DIN rail housing 22.5 mm	6	-	x	x	x
6075689126	SRF DI-F-0/2-E0. 25	Rectangular sensor enclosure (use directly at the machine)	1	-	x	x	

Accessories

Connection cable and connecting cable

Pos.-Nr.	Article number	Designation	Description	Plug alignment	Plug 1	$\begin{gathered} \text { Plug } \\ 2 \end{gathered}$	Number of plugs	Cable length in meter
1	6075689085	S1W-M12A8/BW-1PU	Connecting cable	straight	M	F	8	1
1	6075689086	S1W-M12A8/BW-2PU	Connecting cable	straight	M	F	8	2
2	6075689087	S1W-M12C4/AW-2PU	Connecting cable	straight	M	F	4	2
2	6075689088	S1W-M12C4/AW-5PU	Connecting cable	straight	M	F	4	5
2	6075689089	S1W-M12C4/AW-10PU	Connecting cable	straight	M	F	4	10
3	6075689092	SFW-M12B5/AW-2PU	Connecting cable	straight	F		5	2
3	6075689093	SFW-M12B5/AW-5PU	Connecting cable	straight	F		5	2
3	6075689090	SFW-M12C4/AW-0.5PU	Connecting cable	straight	F		4	0.5
3	6075689091	SFW-M12C4/AW-2PU	Connecting cable	straight	F		4	2

T adapter, termination plug and fixing screws

Pos.-Nr.	Article number	Designation	Description
	$\mathbf{6 0 7 5 9 8 9 0 8 2}$	ATS-M12/4-M12/8	T adapter for series connection
5	$\mathbf{6 0 7 5 9 8 9 0 8 3}$	ATD-M12/8-M12/4	T adapter for connection of I/O link and reset button
6	$\mathbf{6 0 7 5 6 8 9 0 8 4}$	AEP-M12/4	Termination plug M12
	$\mathbf{6 0 7 5 6 8 9 1 2 7}$	AT-CLIP-M12	Fixing clip for T adapter
	$\mathbf{6 0 7 5 6 8 9 1 2 8}$	One-way screw M4×16	$10 \times$ Fixing screws M4 $\times 16$ One-way screw

Technical data SRF

Electrical data

- Rated operational voltage $\mathrm{U}_{\mathrm{e}}: 24 \mathrm{~V}$
- Output current of the safety outputs $\mathrm{I}_{\mathrm{e}}: 100 \mathrm{~mA}$
- Output current of the message output $\mathrm{I}_{\mathrm{e}}: 10 \mathrm{~mA}$

Mechanical data

- Housing: PA66 + PA6, red, self-extinguishing
- Connection cable: PUR
- Mounting holes: \varnothing 4,5 (for M4 screws)
- Displays: $1 \times$ LED red/green operating status
$1 \times$ LED yellow actuation status
- Ambient temperature: $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- Protection class: IP69

Safety data sheet

- PL e / Kat. 4 (according to EN ISO 13849-1)
- SIL CL 3 (according to DIN EN 62061)
- $\mathrm{PFH}_{\mathrm{D}}=6 \times 10^{-9} 1 / \mathrm{h}$
- Mission time T_{M} : 20 years
- Switching distance:
- Rated operating distance $\mathrm{Sn}_{\mathrm{n}} 13 \mathrm{~mm}$
- Assured switching distance - On Sao: 10 mm
- Assured switching distance - Off Sar: 25 mm
- Hysteresis: 2 mm
- Switch-off delay ta: max. 100 ms
- Ready delay tv: max. 2 s

BERNSTEIN

Technichal data diagnostic module

Cabinet module

- Rated operational voltage Ue: 24 V DC
- I/O Link protocol: V1.1
- Output current per signal output le: 50 mA
- Ambient temperature: $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
- Protection class: IP20

Field module

- Rated operational voltage Ue: 24 V DC
- I/O Link protocol: V1.1
- Output current per signal output le: -
- Ambient temperature: $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- Protection class: IP69

Safety relay SCR ON

The SCR ON safety relay monitors the SRF's safety outputs. Product selection of SCR safety relays see also p. 149

Features

- PL e to ISO 13849
- 3 enabling paths
- Feedback loop with monitored / automatic reset

Article number Designation

CSMS Contactless Safety Monitoring Sensor

The CSMS can directly be connected to contactors. The RRS version integrates an evaluation of a return circuit and start button with direct connection to contactors.

CSMS...RRS...-ST

CSMS...RRS...-KA

CSMS-S-...

Sensing distance		
Rated sensing distance	S_{n}	13 mm
Assured sensing distance - (On)	Sa_{a}	min .10 mm
Hysteresis	H	0.5 mm
Assured sensing distance - (Off)	S_{ar}	$\max .19 \mathrm{~mm}$

To achieve the stated sensing distances on metal substrates, CSMS spacers must be used.

CSMS-RRS with evaluation of a return circuit

Advantages

- Individual CSMS or safe serial connection with max. 32 CSMS up to PLe
- Manual or automatic start
- No external safety evaluation unit required
- Uni- or multi-coding
- Integrated evaluation of a return circuit and start button with direct connection to contactors

Unicode	Multicode	M12 connector	2 m cable + M12 connector	Article number	Designation
x			x	6075988057	CSMS-SET-RRS-H-KA
x		x		6075988058	CSMS-SET-RRS-H-ST
	x	x		6075988066	CSMS-SET-RRS-L-ST
	x		x	6075988068	CSMS-SET-RRS-L-KA
x			x	6075985048	CSMS-M-RRS-H-KA
x		x		6075986050	CSMS-M-RRS-H-ST
	x		x	6075985061	CSMS-M-RRS-L-KA
	x	x		6075986062	CSMS-M-RRS-L-ST
Replacement actuator Multicode				6075980065	CSMS-S-L
Replacement actuator Unicode				6075980052	CSMS-S-H*

[^3]
Safety sensors MAK

To achieve a PL or SIL value with the MAK safety sensors, it is necessary to connect them to a safety evaluation unit. The magnetic safety sensors are dual channel versions. The evaluation unit (BERNSTEIN designation: MÜZ) monitors the correct switching of the two MAK channels and a defined time window in which the two channels must switch.

With the combination of MAK and MÜZ, a PL D and a SIL 3 can be reached. Besides the 3 different types of magnetic safety switches, BERNSTEIN also offers two different evaluation units.

Product features

- Performance Level d
- Redundancy with NO and NC contacts
- Switching distance: 6 mm
- IP67

Magnetic controllers for safety functions

BERNSTEIN offers magnetic controllers for safety functions that fulfill performance level d according to EN 13849-1 and SIL 3 according to EN 61508 or rather EN 62061.

A safety system consists of the safety magnetic controllers and a coded transducer unit.

The anti-tamper security of the transducer unit is achieved by variable coding of the actuator magnets and magnetic switches.
Depending on the type of device, one or two coded transducer units (magnetic switch with corresponding magnet) of type:

- MAK-4236
- MAK-5236
- MAK-5336
can be connected to and monitored by the safety magnetic controllers.

MAK-5236-x with magnet TK-52-CD / 2

The safety magnetic controller processes the NC or NO contact signals coming from the coded magnetic switches.
Thereby, it is possible to detect the opening of the safety guard (door, hatch, protective hood etc.) and to turn off the safety output. Thanks to the redundant evaluation, the magnetic controller is switched to the "safe state" should a fault or manipulation occur, or if the time difference is exceeded between the NC contact signal and the NO contact signal. An LED indicates that the safety magnetic controller is in the "safe state".
To ensure fault detection of the switch-off device, the MÜZ-102 offers the possibility to connect a return circuit. The system additionally features a NC contact for signalling purposes.

- Redundancy by NO and NC contacts
- Manipulation safety by coding
- Monitoring of the return circuit (depending on device type)

Magnetic controllers for safety functions

TÜV certified

- EN ISO 13849-1 Performance Level d
- EN 61508 and EN 62061 SIL 3
- EN 60947-5-3 Single fault security S

Coded transducer units

Magnetic switches

| Type designation | MÜZ-102/D24-FL-DA | MÜZ-202/D24-FL |
| :--- | :--- | :--- | :--- |
| Article number | $\mathbf{6 3 9 2 7 0 1 3 0 6}$ | $\mathbf{6 3 9 2 7 0 2 3 0 7}$ |
| Max. number of connectable transducer units | 1 | 2 |
| Safety output, NO contact | \bullet | \bullet |
| Feedback circuit | \bullet | - |
| Data output (NC contact) | \bullet | - |
| Technical data | | |
| Operating voltage | 24 VDC | 24 VDC |
| Operating current | 60 mA | 60 mA |

Switching voltage	max	AC 250 V	AC 250 V
Switching current	max	8 A	8 A
Switching power	max	1700 VA	1700 VA
LED: Hazard status/switching status		-/-	\bullet -
LED: Supply voltage/ON		\bullet	-
Relay: Positive-action/standard		-/-	\bullet -
Ambient conditions			
Temperature range	min/max	$0^{\circ} \mathrm{C} /+55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} /+55^{\circ} \mathrm{C}$
		$32{ }^{\circ} \mathrm{F} /+131^{\circ} \mathrm{F}$	$32{ }^{\circ} \mathrm{F} /+131^{\circ} \mathrm{F}$
Protection class (to IEC 529, EN 60529)		IP20	IP20
Enclosure material		PC	PC
Mounting system (DIN 50022)		TS 35	TS 35
Type of connection: Terminal block		max. $2.5 \mathrm{~mm}^{2}$	max. $2.5 \mathrm{~mm}^{2}$

Type designation
Article number
Cable length

Ambient conditions	
Temperature range	$\mathrm{min} / \mathrm{max}$
Protection class (to IEC 529, EN 60529)	
Enclosure material	
Sensing distance	S on
	S on

Actuating magnet

Type designation
Article number
Use: safety magnetic controller
Article number

All dimensions in mm
Other types available on request.

Safety Rope Pull Switches

SRM, SR

General information on safety rope pull switches

The series SR and SRM safety rope pull switching devices developed and manufactured by BERNSTEIN AG are designed and approved in accordance with the standards IEC 947-5-5, DIN EN 60947-5-5 and ISO 13850, i.e. on actuation or in the event of cable breakage, the emergency stop switching device locks automatically and can only be reset to its initial setting by means of the resetting device on the switch.

In order for the overall system to conform to the standards EN 60947-5-5 and EN 13850 governing the emergency stop function of rope pull switches it is necessary to integrate a spring in the system. The reasoning behind this requirement is that a person who triggers the emergency stop functions does not need to consider the activation direction. With the spring it is possible to pull the cable in the direction of the rope pull switch, thus activating the emergency stop function.

Safety rope pull switches may only be used in control power circuits. Safety rope pull switches are used on accessible sides of conveyor systems or machines. In contrast to Emergency Stop switching devices (e.g. mushroom pushbuttons) installed at intervals, with which the emergency stop signal can only be generated at the device itself, with the safety rope pull switch it is possible to generate the signal at any point in a section. Depending on the type of switching device, a span of up to 75 m can be achieved with a pull cable connected to the pulling element.

The maximum possible span length of a pull cable switch is always dependent on the temperature fluctuations to which the system is exposed. It is possible that the pull cable switch may trip due to the fact that, owing to its temperature coefficient, the length of the steel cable can change in response to changes in temperature. Ultimately, this change in length is dependent on the length of the cable, the difference in the temperature change and the type of springs used in the pull cable switch. Overview 1 shows which cable lengths are possible as a function of change in temperature.

Pull cable counterspring

With overstretch safeguard based on compression spring principle

Application		
Type	SR...100/SR...175/SRM ...175	SR ...300/SRM ...300
Spring Art. No.	$\mathbf{3 9 1 1 0 4 2 1 5 3}$	$\mathbf{3 9 1 1 0 4 2 1 5 4}$
$L_{0 \text { min. }}$	383	483
$L_{\text {max. }}$	487	653

Advantages of SRM / SR safety rope pull switches:

- The SR (plastic enclosure) and SRM (metal enclosure) safety rope pull switches are available with the Quickfix quick-connect system, which renders unnecessary cable eye stiffeners, cable grips and turnbuckles that are otherwise required for mounting the cable. Added to this, the time required to install the cable is drastically reduced. Versions with a conventional eye are, of course, also available.
- All variants of the SRM and especially of the SR are equipped with an integrated emergency stop impact button that can be actuated by pressing in hazardous situations. In the same way as pulling the pull cable, the safety contacts are opened and the switch is locked.
- The type SRM...E-... safety rope pull switches are optionally available with a remote indicator for monitoring the cable tension. This option has an integrated sensor unit that monitors situations in which the cable tension may overshoot or undershoot the permissible value, or triggering of the safety rope pull switch is imminent.

This electronic output signals in good time that maintenance / adjustment is required otherwise the machine will shut down. This output can also be used for event signalling purposes or optionally available indicator lamps can be connected. This connection configuration conforms to "preventative maintenance" requirements.

- During installation / adjustment of the cable span, the correct tension of the cable can be checked through the integrated inspection window. To ensure optimum cable tension as part of the adjustment procedure, the tips of the indicator arrows should be aligned with the marking.
- A second inspection window integrated in the SRM version makes it possible to check the status of the locking function and of the contacts. Yellow in the inspection window indicates that the safety rope pull switch is locked. Green in the inspection window indicates that the rope pull switch is ready for operation and the cable assembly is monitored.

Overview 1

	Span L max. in metres [m]																																							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	55	60	65	70	75
Max. temperature variation in Kelvin (K)	+/-80 K ; +/-110 K									I																														
	+/-70 K ; +/-100 K									I			!				I																							
	+/-60 K ; +/-90 K									'			!				'																							
	+/-50 K ; /-70 K												,				I																							
	+/-40 K ; /-50 K																I																							
	+/-30 K ; +/-40 K																																							
	+/-20 K ; +/-26 K																																							
	+/-10 K; +/-14 K																																							
	+/-7K; +/-9K																																							
SR... 100	Max. span 25 metres																																							
SR...175/SRM... 175	Max. span 37.5 metres																																							
SR...300/SRM... 300	Max. span 75 metres																																							

The parameter 100, 175 and 300 in the product designation indicates the force of the springs used in the rope pull switch. It should be noted that a greater actuating force is required for higher spring forces.

The indications of the temperature ranges refer to a system for emergency stop applications with return spring.
With a system without return spring, emergency stop applications are not permitted.
In this case, the above mentioned Kelvin values have to be halved.

Installation example

Safety Rope Pull Switches

Max. span length

Quickfix
with remote monitoring
(Dimensioned drawing 1)

Approvals

75 metres (Dimensioned drawing 1)

2 NC/2 NO

6012929087
SRM-U1Z/U1Z-QF-300

6012999096

SRM-A2Z/U1Z-QF-300

6012921091	
SRM-U1Z/U1Z-LU-300	SRM-A2Z/U1Z-LU-300

6012929088

SRM-U1Z/U1Z-QF-300-E

6012999097

 SRM-A2Z/U1Z-QF-300-E6012929085 SRM-U1Z/U1Z-QF-175

6012999094
SRM-A2Z/U1Z-QF-175

6012921089 SRM-U1Z/U1Z-LU-175

 6012991098 SRM-A2Z/U1Z-LU-1756012929086
SRM-U1Z/U1Z-QF-175-E
© ${ }^{0}$ DGUV
©(C)

6012991101

SRM-A2Z/U1Z-LU-300-E

6012921092
 SRM-U1Z/U1Z-LU-300-E

(1) © DGUV
(cc)

Technical data

Electrical data		
Rated insulation voltage	U_{i} max.	250 V
Rated operating voltage	U_{e} max.	240 V
Conventional thermal current	$1{ }_{\text {the }}$	10 A
Utilisation category	U_{e} / I_{e}	AC-1
Short-circuit protection		6 Ag
Protection class		I
Mechanical data		
Enclosure	Aluminium pressure die-casting	
Ambient temperature	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	
Mechanical service life	1×10^{5}	
Switching frequency max.	$\leq 20 / \mathrm{min}$.	
Mounting	$4 \times \mathrm{M6}$ or $4 \times \mathrm{M} 5$	
B10d	0.2 mill.	
Type of connection	Screw connections	
Conductor cross sections	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$	
Cable entry	$3 \times \mathrm{M} 20 \times 1.5$	
Protection class	IP67 conforming to IEC/EN 60529	
Standards		
VDE 0660 T100, DIN EN 60947 VDE 0660 T200, DIN EN 60947 VDE 0660 T210, DIN EN 60947 ISO 13850		

Contact type	1 NC/1 NO (Zb)	2 NC (Zb)	
Action contacts	U1Z	A2Z	
Circuit symbol	Slow-action contacts	Slow-action contacts	
Switching diagram			
\square On \square OFF			

The pulling force data depend on the type of switch used. (SRM...175/SRM...300)
Tolerances: Switching point + / - 0.5 mm , actuating force + / - 15%

Safety Rope Pull Switches

Technical data

25 metres (Dimensioned drawing 3)

$2 \mathrm{NC} / 2$ NO 4 NC

6011629070

SR-U2Z-0-QF-100-LO-0-0

6011691080 SR-A4Z-0-QF-100-LO-O-0

6011629067

SR-U2Z-NA-QF-100-L0-0-0 SR-A4Z-NA-QF-100-L0-0-0 6011691077

6011621064

6011691074

SR-U2Z-0-LU-100-L0-0-0 SR-A4Z-0-LU-100-L0-0-0

© © © ©av

Contact type	2 NC/ 2 NO (Zb)		4 NC	
Action contacts	U2Z		A4Z	
Circuit symbol	Slow-action contacts		Slow-action contacts	
Switching diagram				
		$-100 \mathrm{~N} / 175 \mathrm{~N} / 300 \mathrm{~N}$ Latch $-80 \mathrm{~N} / 140 \mathrm{~N} / 240 \mathrm{~N}$ - Latch -60 N/105 N/180 N		

Double-Spanned Rope Pull Switches

SiRK, Si1, Si2

BERNSTEIN double-spanned rope pull switches (SiRK, Si1 and Si2) are also used in emergency stop applications. When the cable is pulled the switching lever is deflected in the corresponding direction and the system shut down.

The switches are available in two metal versions, the Si1 and Si2, as well as an insulation-enclosed version, the SiRK.

These types of rope pull switch are ideally suited for applications with high temperature fluctuations and long cable spans. With their sturdy enclosure, the Si1 and Si2 are the perfect switches for harsh environments.

Two cables spanned in opposite directions are attached to the switching device. The countersprings are secured to the wall at the ends of the cables. Provided the change in temperature is the same at all points along the cable, the springs will effectively compensate for the change in cable length

Product selection

Designation	Article number	Max. span length
SI1-U2Z AK R-RAST	$\mathbf{6 0 1 4 7 3 5 0 0 1}$	$2 \times 50 \mathrm{~m}$
SI1-U1Z/U1Z AK R-RAST	$\mathbf{6 0 1 4 7 3 5 0 2 5}$	$2 \times 50 \mathrm{~m}$
SI2-U2Z AK R-RAST	$\mathbf{6 0 1 5 7 3 5 0 0 2}$	$2 \times 50 \mathrm{~m}$
SIRK-U2Z R	$\mathbf{6 0 1 5 6 2 5 0 0 1}$	$2 \times 75 \mathrm{~m}$

Technical data	SiRK	Si1	Si2
Electrical data			
Rated insulation voltage $\quad U_{i}$	250 V AC	250 V AC	400 V AC
Rated operating voltage U_{e}	240 V	250 V	240 V
Conventional thermal current $I_{\text {the }}$	10 A	10 A	10 A
Utilisation category	AC 15, A $300240 \mathrm{~V} / 3 \mathrm{~A}, 120 \mathrm{~V} / 6 \mathrm{~A}$ DC 13, Q300 $250 \mathrm{~V} / 0.27 \mathrm{~A}, 125 \mathrm{~V} / 0.55 \mathrm{~A}$	AC-15, $\mathrm{U}_{\mathrm{e}} / \mathrm{I} \mathrm{e} 240 \mathrm{~V} / 3 \mathrm{~A}$	AC-15, $\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$
Positive opening action Θ	as per IEC/EN 60947-5-1, Addendum K	as per IEC/EN 60947-5-1, Addendum K	as per IEC/EN 60947-5-1, Addendum K
Short-circuit protection	Fuse 6 A gL/gG	Fuse $6 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$
Protection class	II, Insulated	1	1
Mechanical data			
Enclosure	ABS	Aluminium sand casting	Cast iron
Cover	ABS	Aluminium sand casting	Cast iron
Actuation	Lever, plastic (glass fibre-reinforced)	Lever (GRP)	Lever (GRP)
Ambient temperature	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Contact type	$2 \mathrm{NC} / 2$ NO contact (Zb)	$2 \mathrm{NC} / 2$ NO contact (Zb)	$2 \mathrm{NC} / 2 \mathrm{NO}$ contact (Zb)
Mechanical service life (up to) ${ }^{\text {(1) }}$	1×10^{5} switching cycles	1×10^{6} switching cycles	1×10^{6} switching cycles
Switching frequency max.	Max. 30/min.	$\leq 10 / \mathrm{min}$.	$\leq 10 / \mathrm{min}$.
Mounting	$2 \times \mathrm{M} 8$	$4 \times \mathrm{M} 8$	$4 \times \mathrm{M} 8$
B10d (up to) ${ }^{(1)}$	0,2 mill.	2 mill.	2 mill.
Type of connection	8 Screw connections (M3,5)	8 Screw connections (M3,5)	8 Screw connections (M3,5)
Conductor cross sections	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$
Cable entry	$2 \times \mathrm{M} 20 \times 1.5$	$1 \times \mathrm{M} 20 \times 1.5$	$3 \times \mathrm{M} 20 \times 1.5$
Weight	$\approx 0.8 \mathrm{~kg}$	$\approx 1.62 \mathrm{~kg}$	$\approx 4.21 \mathrm{~kg}$
Installation position	Any	Any	Any
Protection class	IP65 conforming to EN 60529	IP65 conforming to EN 60529	IP65 conforming to EN 60529
Standards			
VDE 0660 T100, DIN EN 60947-1, VDE 0660 T200, DIN EN 60947-5-	$\begin{aligned} & 0947-1 \\ & 60947-5-1 \end{aligned}$		

[^4]
Double-Spanned Rope Pull Switches

S12

6015735002
SI2-U2Z AK R-RAST
$2 \times 50 \mathrm{~m}$

400 V AC
240 V
10 A
AC- $15,240 \mathrm{~V} / 3 \mathrm{~A}$
(18)

Standard Rope Pull Switches

With and Without Latching Function

Because of their specifications governed by corresponding standards (see Cable Safety Pull Switches SRM/SR), these cable pull switches are used exclusively as command devices.

These switches are available in metal enclosures as well as in insulation-enclosed versions. They are operated manually by pulling on the attached cable.

Thanks to their pretension, these switches, which feature a switching contact with overlap, execute a switching function when the cable is pulled or in the event of cable breakage.

The field of application for these rope pull switches includes

- Opening and closing of (garage) doors
- Starting machines
- Issuing commands in production processes

The basic design of the standard rope pull switches is based on that of position switches.

The specified cable length refers to the maximum length at minimum temperature variation. The maximum cable length may decrease under different environmental conditions.

Technical data		SEK	SiEK	SEM2	SiEM2
Electrical data					
Rated insulation voltage	U_{i}	400 V AC	400 V AC	400 V AC	400 V AC
Rated operating voltage	$U_{\text {e }}$	240 V	240 V	240 V	240 V
Conventional thermal current	$\mathrm{I}_{\text {the }}$	10 A	10 A	10 A	10 A
Utilisation category	$\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}}$	AC-15, Ue $/ \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	AC-15, Ue $/ \mathrm{l}$ e $240 \mathrm{~V} / 3 \mathrm{~A}$	AC-15, Ue $/ \mathrm{l}$ e $240 \mathrm{~V} / 3 \mathrm{~A}$	AC-15, $\mathrm{U}_{\mathrm{e}} / \mathrm{I} \mathrm{e} 240 \mathrm{~V} / 3 \mathrm{~A}$
Mechanical data					
Switching frequency max.		$\leq 50 / \mathrm{min}$.	max. 100/min.	max. 50/min.	max. 50/min.
Mechanical service life		1×10^{6} switching cycles			
B10d		on request	on request	on request	on request
Short-circuit protection		Fuse $10 \mathrm{AgL} / \mathrm{gG}$			
Protection class		II, Insulated	II, Insulated	1	1
Ambient temperature		$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$			
Protection class		IP65 conforming to IEC/EN 60529	IP65 conforming to EN 60529	IP65 conforming to EN 60529	IP65 conforming to EN 60529; DIN VDE 0470T1
Type of connection		4 Screw connections (M3, 5)	4 Screw connections (M3, 5)	4 Screw connections (M3,5)	Screw connections
Conductor cross sections		Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ orStranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$
Enclosure		Thermoplastic, glass fibre-reinforced	Thermoplastic, glass fibre-reinforced	Aluminium pressure die-casting	Aluminium pressure die-casting
Cable entry		$1 \times \mathrm{M} 20 \times 1.5$			
Standards					
VDE 0660 T100, DIN EN 60947-1, IEC 60947-1 VDE 0660 T200, DIN EN 60947-5-1, IEC 60947-5-1					

Technical data		SD	SiD	SIN	SGC	Si88
Electrical data						
Rated insulation voltage	U_{i}	400 V AC	400 V AC	400 V AC	400 V AC	250 V AC
Rated operating voltage	$U_{\text {e }}$	240 V				
Conventional thermal current	$\mathrm{I}_{\text {the }}$	16 A	16 A	10 A	10 A	10 A
Utilisation category	$\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}}$	AC-15, Ue $/ \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	AC-15, Ue $/ \mathrm{l}$ e $240 \mathrm{~V} / 3 \mathrm{~A}$	AC-15, Ue $/ \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	AC-15, Ue $/ \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	AC-15, Ue $/ \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$
Mechanical data						
Switching frequency max.		$\leq 20 / \mathrm{min}$.	max. 20/min.	$\leq 20 / \mathrm{min}$.	$\leq 20 / \mathrm{min}$.	$\leq 50 / \mathrm{min}$.
Mechanical service life		1×10^{6} switching cycles				
B10d		on request				
Short-circuit protection		Fuse $10 \mathrm{AgL} / \mathrm{gG}$	Fuse $10 \mathrm{AgL/gG}$	Fuse $10 \mathrm{AgL/gG}$	Fuse $10 \mathrm{AgL} / \mathrm{gG}$	Fuse $10 \mathrm{AgL/gG}$
Protection class		1	1	1	1	1
Ambient temperature		$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$				
Protection class		IP65 conforming to EN 60529				
Type of connection		Screw connections				
Conductor cross sections		Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$
Enclosure		Aluminium pressure die-casting	Aluminium pressure die-casting	Aluminium pressure die-casting	Aluminium pressure die-casting	Thermoplastic, glass fibre-reinforced
Cable entry		$2 \times \mathrm{M} 20 \times 1.5$	$2 \times \mathrm{M} 20 \times 1.5$	$2 \times \mathrm{M} 20 \times 1.5$	$1 \times \mathrm{M} 20 \times 1,5$	$1 \times \mathrm{M} 20 \times 1,5$
Standards						
VDE 0660 T100, DIN EN 60947-1, IEC 60947-1 VDE 0660 T200, DIN EN 60947-5-1, IEC 60947-5-1						

Standard Rope Pull Switches

SID RAST
SIN RAST

6012441907
SID-UV2Z P-RAST
18 m

240 V
16 A
AC-15, $240 \mathrm{~V} / 3 \mathrm{~A}$

400 V AC
240 V
10 A
AC-15, $240 \mathrm{~V} / 3 \mathrm{~A}$

400 V AC
240 V
10 A
AC-15, $240 \mathrm{~V} / 3 \mathrm{~A}$

Standard Rope Pull Switches

6111431022
SID-UV1Z

6111431069
SID-UV1Z
12 m

500 V AC

240 V
16 A
AC-15, $240 \mathrm{~V} / 3 \mathrm{~A}$

400 V AC
240 V
16 A
AC-15, $240 \mathrm{~V} / 3 \mathrm{~A}$

500 V AC
240 V
16 A
AC- $15,240 \mathrm{~V} / 3 \mathrm{~A}$

Standard Rope Pull Switches

Accessories for Rope Pull Switches

Accessories for Rope Pull Switches

Metal-enclosed belt alignment switches for monitoring conveyor belts

In conveyor belt applications, the safety switch prevents conveyor belts from being damaged or being destroyed as the result of the belt running off track. When the roller lever is deflected by a conveyor belt running off track the safety contacts in the switch engage, thus shutting down the conveyor belt.

Only after eliminating the cause of the malfunction can the system be restarted by means of the pull release (key ring).

The roller lever is mounted in ball bearings. The cast iron enclosure has three M20 x 1.5 cable entries ready for through-wiring. The belt alignment switch is equipped with 2 normally-open contacts and 2 positive opening NC contacts Θ. Thanks to its sturdy design, the device guarantees continuous trouble-free operation even under extreme operating conditions.

Product selection

Part number	Designation
6015736003	Si2-U2Z AW R-Rast

Technical data

1-3 Pedal Foot Switches

Tailored to your applications the modular foot switch concept from BERNSTEIN!

BERNSTEIN offers you a wide range of foot switches to meet exacting requirements in industrial applications.

From one to three pedals in versions with or without a protective hood (UN) to prevent unintentional operation of the switch, the sturdy all-metal enclosure has a protection class of IP65 as standard. The modular design enables you to define pedal functions with up to four switching combinations per pedal to suit your specific application.

Additional functions and equipment, in combination with the basic enclosures and switching elements, open up further control and function variants up to BG (operational health and safety)-approved foot switches with and without mechanical latching.

The respective designation precisely describes the function of the BERNSTEIN foot switches.

(1) Type
 Example:
 F1, F2, F3

(2) Number and type of contact elements

Specified from right to left for multi-pedal switches.
Example: F3-U1/SU1/U2
(3) Number and type of contact elements

These features are denoted in the type designation directly after the corresponding switching element. Example with latching and pressure point: F3-U1/SU1 Y/U2 D

Three basic enclosures

The range of foot switches comprises:

- Three basic enclosures of the same length and height with different width dimensions for one (F1), two (F2) and three (F3) pedals

Cover panel or protective hood

The aluminium enclosures can be optionally equipped with an aluminium cover panel or a protective hood (UN).

Protective hood UN for F1/F2/F3/FH

The aluminium pressure die-cast protective hood (F3: aluminium sand casting) fully shields the pedal at the top and sides while the wide base provides a high degree of stability. It reliably prevents accidental operation from above by falling objects or careless operation from the side.

The interior of the cover is prepared ready to accommodate additional elements:

- Emergency stop button
- Contactor on standard mounting rail as main power switch
- Customer-specific built-in equipment

Mounting holes, rubber feet and separators

The mounting holes make it possible to anchor the foot switch to the floor.

Each foot switch is equipped with four rubber feet to prevent it slipping.

The separators on multi-pedal foot switches prevent several pedals being inadvertently operated simultaneously (version without separators available on request).

Type F1-F3 foot pedals are made from a thermoplastic material.

Switching function U1Z, SU1Z, A2Z, ...

Depending on the application, momentarycontact or snap-action systems from the BERNSTEIN modular system can be used individually or as a combination. Potentiometer (RG) versions are available for control applications.

Latch-action switching Y

After initially pressing the pedal, the switch setting is retained even after the pedal is released. The contact is not interrupted before the pedal is pressed again (bistable).

Pressure point D

(Fig. 2)
Momentary-contact switching with pressure point using two built-in elements with different lead settings.

- Pedal pressed up to pressure point: Switching position for first contact element
- Pedal pressed as far as it will go beyond the pressure point: Switching point for second contact element, the first contact element remains switched on.

Switching element with controller output $R G$

An integrated potentiometer enables infinitely variable control tasks to be performed via a controller output corresponding to the pedal position. A microswitch is additionally activated to provide potential isolation when at rest or in end position. Provisions are made for two microswitches for rest and end position deactivation. The standard potentiometer has a rating of $10 \Omega / 0.5 \mathrm{~W}$. Other types on request.

Fig. 2

Fig. 1

Emergency Stop impact button NA

 (Fig. 3)Since the foot switch is often used in locations other than on the actual machines or systems, an Emergency Stop impact button is directly available to the operator on the command unit.

Power contactor LS

To accommodate analytical applications it is necessary to combine an auxiliary power switch with a main power switch. In line with the cost-effective design and to enable wiring without the need for an additional switch box, this version features a contactor mounted directly on a standard mounting rail in the hooded enclosure.

Hinged protective hood UK for F1

The cast aluminium protective hood UK, which must be raised with the foot before the pedals can be operated, is optionally available for the F1 enclosure to provide protection against falling objects and inadvertent pedal operation.

Pedal lock AT for F1/F2/F3

(Fig. 4)

The pedal cannot be operated before the locking lever is released with the foot. This prevents inadvertent actuation of the pedals even in the event of strong vibration / shaking caused by incorrect handling.

Footrest FST for F1/F2/F3

Applying effective workplace ergonomics to establish the right foot position (heel) is invaluable in prolonged working procedures. The wedge-shape prevents inadvertent operation.

The cast aluminium footrest can also be used under the harshest environmental conditions and, with corresponding inter-linking and screw connections, it can be used together with all types of foot switch. Approved by the Swedish Accident Prevention Commission.

Enclosure specifications (on request)

- Paint finish to customer specification
- Colour of pedals
- Customer logos are possible on the UN protective hood and / or pedal
- Screen print / colour on cover with pedal function or logo
- Enclosure without separators for simultaneous pedal operation
- Additional elements with wider pedals, e.g. On / Off button in pedal or in UN protective hood
- Complete units with cable / plug connection

Ex versions

Complete units with corresponding approvals are available (see EX).

Safety foot switch

Safety lock with manual release

(1) Pedal pressed up to pressure point (Fig. 6):
The make contact is closed and the work process is started.
(2) Pedal pressed beyond resistance of the pressure point in an emergency situation (Fig. 6):
The make contact is interrupted and locked, the work process is interrupted. In this phase the lock remains in the Off position even when the pedal is not pressed. This reliably prevents uncontrolled restart of the machine or moving parts.

3 Release:

Only after the hazardous situation has been remedied does manual release (pushbutton on the side of the enclosure) release the contacts again and the work process can be restarted by pressing the pedal as far as the pressure point.

Types with one-channel and two-channel safety function are available.

NC Normally-closed contact
NO Normally-open contact
W Changeover contact
M Signalling contact
SiPf Safety function on foot switches with mechanical lock

Fig. 3

Fig. 4

Fig. 5

1-3 Pedal Foot Switches

Ordering Instructions

Description of safety function on foot switches with mechanical lock

Technical data

Electrical data		
Rated insulation voltage	U_{i} max.	400 V AC
Rated operating voltage	U_{e} max.	240 V
Conventional thermal current	$\mathrm{I}_{\text {the }}$	10 A
Utilisation category		AC-15, $\mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$
Mechanical data		
Switching frequency		max. 50/min.
Mechanical service life	Off-On (-Off) Off-On-Stop-Off	$\begin{aligned} & 10 \times 10^{6} \text { switching cycles } \\ & 1 \times 10^{6} \end{aligned}$
B10d		On request
Short-circuit protection		Fuse 10 A gL/gG (Slow-action contacts) Fuse 2 A gL/gG (Snap-action contacts)
Protection class		1
Ambient temperature		$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Protection class		IP65 conforming to IEC/EN 60529
Type of connection		Contact screws
Conductor cross sections		Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$
Enclosure		AL
Standards		
VDE 0660 T100, DIN EN 60947 VDE 0660 T200, DIN EN 60947	$\begin{aligned} & 0947-1 \\ & 60947-5-1 \\ & \hline \end{aligned}$	

First DGUV approved enable foot switch

The BERNSTEIN three-stage-enable foot switch combines robust design and advanced technology. With many years of experience and expertise, BERNSTEIN is the prefered partner for industrial foot switches in industrial applications. Through the development of the first approved enable foot switch, BERNSTEIN succeeded again to convert this experience and expertise into customer value and to set new standards in safety technology.

The enable foot switch provides two enable contacts and one signalling contact and is available with or without latch. If the pedal is pressed up to pressure point, the two enable contacts are closed. If the pedal is released,

Fig. 7
the enable contacts are open again. If the pedal is pressed up to the pressure point, the enable positive opening action contacts are opened. For the application of an enable device, the rules DIN EN ISO 12100 and DIN EN 60204-1 apply.

Switching diagram with optional PNP sensor

Example of a switching diagram with static position monitoring in position 1

Thanks to this signalling contact, a dynamic position detection is possible. Alternatively, a static position detection can be realised by means of a PNP sensor. It is thus possible to determine the actuation position one the OFF position of the enable contacts (the actuator is not pressed) - or the position three - the OFF position of the operating contacts (the actuator is fully pressed).

The approved enable foot switch is only available with cover.

Foot switch with controller output (analogue output)

This version of foot switch has a variable controlling current and voltage output that is directly proportional to the pedal position. A teachable signalling output is additionally activated if a certain pedal position which has been adjusted before has been reached. The analogue output can be delivered in a $0-5 \mathrm{~V}, 0-10 \mathrm{~V}, 0-20$ mA or $4-20 \mathrm{~mA}$ version. The foot switch is available in single pedal version. Two and three pedal versions on request.

Fig. 8

Mobility handling for foot switches

The mobility handle option is a complementary accessory for the one (F1) and two (F2) pedal versions. Modification to the foot switch is not required and can be retrofitted.

Fig. 9

1-3 Pedal Foot Switches

Product selection

F1 Snap-action contacts

Article number	Designation	Switching contacts Pedal 1	Pressure point Pedal 1	Protective hood	Special feature
$\mathbf{6 0 6 1 3 0 0 0 1 1}$	F1-SU1Z	1NC/1NO	-	-	-
$\mathbf{6 0 6 1 4 0 0 6 1}$	F1-SU2Z	$2 N C / 2 N O$	-	-	-
$\mathbf{6 1 6 1 4 0 0 4 9 3}$	F1-SU2ZD	$2 N C / 2 N O$	30 N	-	-
$\mathbf{6 0 6 1 8 0 0 0 1 2}$	F1-SU1Z UN	1NC/1NO	-	UN	-
$\mathbf{6 1 6 1 8 0 0 0 7 3}$	F1-SU1ZD UN	1NC/1NO	200 N	UN	-
$\mathbf{6 0 6 1 9 0 0 6 2}$	F1-SU2Z UN	2NC/2NO	-	UN	-
$\mathbf{6 0 6 1 9 0 0 4 3 3}$	F1-SU2ZD UN	$2 N C 2 N O$	200 N	UN	-
$\mathbf{6 1 6 1 0 0 0 4 8 7}$	F1-SU3 UN	$3 N C / 3 N O$	-	UN	-

F1 Slow-action contacts

Article number	Designation	Switching contacts Pedal 1	Pressure point Pedal 1	Protective hood	Special feature
6061100005	F1-U1Z	1NC/1NO	-	-	-
6061200003	F1-U2Z	2NC2NO	-	-	-
6061200007	F1-U2ZD	2NC/2NO	200 N	-	-
6061600006	F1-U1Z UN	1NC/1NO	-	UN	-
6061600010	F1-U1ZD UN	1NC/1NO	200 N	UN	-
6061700004	F1-U2Z UN	2NC/2NO	-	UN	-
6061700008	F1-U2ZD UN	2NC/2NO	200 N	UN	-

F1 with additional functions

Article number	Designation	Switching contacts Pedal 1	Pressure point Pedal 1	Protective hood	Special feature
6161000306	F1-SU1ZDA 1Z UN	1M/SiPf	460 N	UN	Latching
6161500686	F1-SU1Z/UV1ZD	SiPf	460 N	-	Latching, side sealed cable gland
6161000203	F1-SU1Z/UV1ZD UN	SiPf	200 N	UN	Latching, side sealed cable gland
6161000443	F1-UV1Z/UV1ZD	2SiPf	200 N	-	Latching, side sealed cable gland
6161100554	F1-U1Z AT	1NC/1NO	-	-	Pedal lock
6161800482	F1-SU1Z AT UN	1NC/1NO	-	UN	Pedal lock
6161700483	F1-U2Z AT UN	2NC/2NO	-	UN	Pedal lock
6061100001	F1-U1Y	1NC/1NO	-	-	Bistable
6161000676	F1-A2 Y	2NC	-	-	Bistable
6161800247	F1-SU1Y UN	1NC/1NO	-	UN	Bistable
6061800436	F1-SU1Z-LS22-UN	1NC/1NO	-	UN	Power contactor
6061800439	F1-SU1Y-LS22-UN	1NC/1NO	-	UN	Bistable and integrated power contactor
6061600435	F1-U1Z NA2 UN	1NC/1NO	-	UN	Emergency Stop button in cover
6161700091	F1-U2Z UN FST	2NC/2NO	-	UN	Footrest
6161300327	F1-SU1 MI RG 10K2W	1W	-	-	Potentiometer 10K2W
6161800662	F1-SU1 MI RG 5K0.5W UN	1W	-	UN	Potentiometer 5K0,5W
6161800645	F1-SU1 MI RG 10K0.5W UN	1W	-	UN	Potentiometer 10K0,5W

Enable foot switch F1

Article number	Designation	Switching contacts Pedal 1	Pressure point Pedal 1	Protective hood	Special feature
6061500559	F1-ZSD	1NC / 2NO	200 N	-	Pressure point D
6061500567	F1-ZSDR	1NC / 2NO	200 N	-	Pressure point D, Latching R
6061500569	F1-ZSP1D	1NC / 2NO	200 N	-	Additional board 1*, Pressure point D
6061500570	F1-ZSP3D	1NC / 2NO	200 N	-	Additional board 3**, Pressure point D

Slow-action and snap-action contacts are mixed in the special type table. The snap-action contacts are identified by the S in the contact element designation (e.g. SU1)!

* Additional board PNP for determination of switching position $1{ }^{* *}$ Additional board PNP for determination of switching position 3

F1 Foot switch with controller output

Article number	Designation
6161500723	F1-AU0-5
6161500724	F1-AU0-10
6161500725	F1-AIO-20
6161500726	F1-Al4-20

Article number	Designation	Special feature
$\mathbf{6 1 6 1 0 0 0 7 2 7}$	F1-AU0-5 UN	Prot. shroud UN
$\mathbf{6 1 6 1 0 0 0 7 2 8}$	F1-AU0-10 UN	Prot. shroud UN
$\mathbf{6 1 6 1 0 0 0 7 2 9}$	F1-AIO-20 UN	Prot. shroud UN
$\mathbf{6 1 6 1 0 0 0 7 3 0}$	F1-Al4-20 UN	Prot. shroud UN

Mobility handling for foot switches

Article number	Designation
3996000229	F1-TV
3996000230	F2-TV

Product selection

F2 Snap-action contacts

Article number	Designation	Switching contacts		Pressure point		Protective hood	Special feature
		Pedal 1	Pedal 2	Pedal 1	Pedal 2		
6062330021	F2-SU1Z/SU1Z	1NC/1NO	1NC/1NO	-	-	-	-
6062440065	F2-SU2Z/SU2Z	2NC/2NO	2NC/2NO	-	-	-	-
6062830022	F2-SU1Z/SU1Z UN	$1 \mathrm{NC} / 1 \mathrm{NO}$	1NC/1NO	-	-	UN	-
6162000418	F2-SU1Z/SU2ZD UN	1NC/1NO	2NC/2NO	-	460 N	UN	-
6062830417	F2-SU1ZD/SU1ZD UN	1NC/1NO	1NC/1NO	200 N	200 N	UN	-
6062940066	F2-SU2Z/SU2Z UN	2NC/2NO	2NC/2NO	-	-	UN	-
6162000503	F2-SU4ZD/SU4ZD UN	4NC/4NO	4NC/4NO	200 N	200 N	UN	-

F2 Slow-action contacts

Article number	Designation	Switching contacts		Pressure point		Protective hood	Special feature
		Pedal 1	Pedal 2	Pedal 1	Pedal 2		
6062110013	F2-U1Z/U1Z	1NC/1NO	1NC/1NO	-	-	-	-
6062220015	F2-U2Z/U2Z	2NC/2NO	2NC/2NO	-	-	-	-
6062220019	F2-U2ZD/U2ZD	2NC/2NO	2NC/2NO	200 N	200 N	-	-
6062610014	F2-U1Z/U1Z UN	1NC/1NO	1NC/1NO	-	-	UN	-
6162610253	F2-U1ZD/U1Z UN	1NC/1NO	1NC/1NO	140 N	-	UN	-
6062620086	F2-U1Z/U2ZD UN	1NC/1NO	2NC/2NO	-	200 N	UN	-
6162720675	F2-U2Z/U1Z UN	2NC/2NO	1NC/1NO	-	-	UN	-
6062710376	F2-U2ZD/U1Z UN	2NC/2NO	1NC/1NO	200 N	-	UN	-
6062720016	F2-U2Z/U2Z UN	2NC/2NO	2NC/2NO	-	-	UN	-
6062720020	F2-U2ZD/U2ZD UN	2NC/2NO	2NC/2NO	200 N	200 N	UN	-
6162000651	F2-SU1ZA2ZD/SU1Z UN	3NC/1NO	1NC/1NO	460 N	-	UN	-

F2 with additional functions

Article number	Designation	Switching contacts		Pressure point		Protective hood	Special feature
		Pedal 1	Pedal 2	Pedal 1	Pedal 2		
6162000486	F2-SU1ZUV1ZD/SU1Z UN	1M/ SiPf	1NC/1NO	460 N	-	UN	Safety lock, pedal 1
6162000364	F2-SU1ZSU1ZD/SU1Z UN	2 SiPf	1NC/1NO	200 N	-	UN	Safety lock, pedal 1
6162000338	F2-SU1ZUV1D/SU1ZUV1D UN	SiPf	SiPf	200 N	200 N	UN	Safety lock, pedal 1 and 2
6162000583	F2-UV1ZD/UV1ZD UN RAST	SiPf	SiPf	200 N	200 N	UN	Safety lock, pedal 1 and 2, 2-piece
6062610047	F2-U1Y/U1Z UN	1NC/1NO	1NC/1NO	-	-	UN	Bistable, pedal 1
6162840655	F2-SU1Y/SU2Z UN	1NC/1NO	2NC/2NO	-	-	UN	Bistable, pedal 1
6062610018	F2-U1Y/U1Y UN	1NC/1NO	1NC/1NO	-	-	UN	Bistable, pedal 1 and 2
6162720623	F2-U2ZAT/U2Z UN	2NC/2NO	2NC/2NO	-	-	UN	Pedal lock pedal 1
6162830500	F2-SU1ZAT/SU1ZAT UN	1NC/1NO	1NC/1NO	-	-	UN	Pedal lock pedal 1 und 2
6162720700	F2-U2Z/U2Z NA2 UN	2NC/2NO	2NC/2NO	-	-	UN	Emergency Stop button in cover
6162630452	F2-U2Z/SU1MIRG UN	2Ö/2NO	1NC/1NO	-	-	UN	10 K potentiometer on pedal 2
6162610578	F2-U1D ÜBERHUB/U1Z UN	1NC/1NO	1NC/1NO	200 N	-	UN	Extended stroke, 1
6162830680	F2-SU1D ÜBERH/SU1D ÜBERH UN	1NC/1NO	1NC/1NO	200 N	200 N	UN	Extended stroke, 1 and 2

Enable foot switch F2

Article number	Designation	Switching contacts		Pressure point		Protective hood	Special feature
		Pedal 1 (left)	Pedal 2 (right)	Pedal 1 (left)	Pedal 2 (right)		
6062500561	F2-U1Z/ZSD	1NC / 1NO	1NC/2NO	-	200 N	-	Pressure point D (Pedal 2)
6062500568	F2-ZSDR/ZSDR	1NC / 2NO	1NC/2NO	200 N	200 N	-	Pressure point D, Latching R

Slow-action and snap-action contacts are mixed in the special type table. The snap-action contacts are identified by the S in the contact element designation (e.g. SU1)!

1-3 Pedal Foot Switches

Product selection

F3 Slow-action contacts

Article number	Designation	Switching contacts			Pressure point			Protective hood	Special feature
		Pedal 1	Pedal 2	Pedal 3	Pedal 1	Pedal 2	Pedal 3		
6063833045	F3-SU1Z/SU1Z/SU1Z UN	1NC/1NO	1NC/1NO	1NC/1NO	-	-	-	UN	-
6163015473	F3-SU1ZUV1D/U1/SU1Z UN	1NC/2NO	1NC/1NO	1NC/1NO	200 N	-	200 N	UN	-
6063111025	F3-U1Z/U1Z/U1Z	1NC/1NO	1NC/1NO	1NC/1NO	-	-	-	-	-
6063611026	F3-U1Z/U1Z/U1Z UN	1NC/1NO	1NC/1NO	1NC/1NO	-	-	-	UN	-
6063612423	F3-U1Z/U1Z/U2Z UN	1NC/1NO	1NC/1NO	2NC/2NO	-	-	200 N	UN	-
6063721262	F3-U2ZD/U2ZD/U1Z UN	2NC/2NO	2NC/2NO	1NC/1NO	200 N	200 N	-	UN	-
6063722171	F3-U2ZD/U2ZD/U2ZD UN	2NC/2NO	2NC/2NO	2NC/2NO	200 N	200 N	200 N	UN	-

F1 - Foot switch with one pedal

F1 UN - Foot switch with two pedals and protective hood

F2 - Foot switch with two pedals

F2 UN - Foot switch with two pedals and protective hood

F3 - Foot switch with three pedals

F3 UN - Foot switch with three pedals and protective hood

Please find our wide range of foot switches in our new brochure.

SCR - Safety Relay

Whether it's safety switches or safety relays, BERNSTEIN has the complete range of products for your application. Our SCR safety relays are used to reliably evaluate signals, such as those generated by BERNSTEIN position switches, safety switches, safety latching devices, safety rope pull switches, safety sensors or 2-hand controllers.

With their compact standard mounting rail enclosure, BERNSTEIN SCR relays impress in a wide variety of applications up to performance level e as defined by EN 13849. Conforming to this standard, the SCR relays monitor the correct position and reliable operation of safety sensors and or contacts in safety switches. This evaluation function is used to actuate power elements such as power contactors or frequency converters and stop machines in the case of emergency.

Two positive opening normally-closed contacts are required as the signalling contacts for safety gate monitors. Virtually all BERNSTEIN switches feature these contacts.
They can be identified by the Θ symbol.

Schematic representation of safety relay system

The product range includes switching relays for evaluating:

- Safety gate monitors with and without monitored start pushbutton
- Expansion module as auxiliary switching circuit for safety relays
- Two-hand controllers
- Auxiliary controller for safety light curtains/barriers

Technical data

Electrical data		
Supply voltage	$U_{\text {e }}$	$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{(} 6075111020$ 24V DC)
Voltage range		0,90 ... 1, $1 \mathrm{U}_{\text {e }}$
Frequency		50 ... 60 Hz
Power intake		24 V DC: $3 \mathrm{~W}, 24 \mathrm{~V}$ AC: 5 V A
Performance data		
Conductor cross section		$2 \times 1.5 \mathrm{~mm}^{2} / 4 \times 1.5 \mathrm{~mm}^{2}$
Contact data		
Switching voltage		$230 \mathrm{VAC}, 24 \mathrm{VDC}$
Switching current		5 A
Max. switching power		1250 V A (ohmic load)
Mechanical service life		107 switching cycles
Environmental data		
Ambient temperature		$-25^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Protection class, enclosure		IP40 DIN VDE 0470 Part 1
Protection class, terminals		IP20 DIN VDE 0470 Part 1
Mechanical data		
Enclosure material		Polyamide PA 6.6
Approvals		
TÜV, UL, C-UL		

Product selection

Article number	Designation	Performance Level	Enable current paths (NO contact)	Signalling contact (NC contact)	Monitored start	Start automatic/ pushbutton (manual)	
6075111009	SCR4-W22-3.5-D	e	3	1	No	Auto/pushbutton	-
6075111010	SCR4-W22-3.5-SD	e	3	1	Yes	Pushbutton	
6075111015	SCR2-W22-2.5	d	2	0	No	Auto/pushbutton	-
6075111016	SCR2-W22-2.5-S	d	2	0	No	Pushbutton	
6075111018	SCR4-W22-2.6-D2H	e	2	1	-		
6075111020	SCR ON4-W22-3.6-S	e	3	0	-	Programmable	Pushbutton

AS Interface - Safety at Work

The resounding success of the AS interface (actuator-sensor interface) that operates in accordance with the master-slave principle is attributed by its complete ease of use, its ability to be specifically adapted to the simplest elements in machine and system construction as well as the host of unparalleled application advantages it offers. The AS interface is particularly advantageous against the backdrop of the need to conform to the Machinery Directive 2006/42/EC since 29.12.2009. Performance level e and SIL 3 are achieved effortlessly. It is not always possible to set up safety systems with safety switches connected in series while conforming to EN 13849-1. Such configurations present no problems for the AS interface which provides effective solutions up to the highest performance level.

The unshielded two-wire line that carries data and power renders intricate parallel wiring between sensors and controller unnecessary, thus offering a considerably expanded range of functionality while reducing costs. With piercing technology corresponding field devices, i.e. up to 62 standard / 31 safety devices or a mixed configuration, can be connected using the plug\&play principle in any position on the yellow, two-core cable. The AS interface master, acting as an independent gateway to higher bus systems (e.g. Profibus), monitors the bus and cyclically polls the bus users.

As an open-ended standard, AS interface guarantees maximum compatibility while providing significant benefits in terms of overall cost considerations. These benefits are reflected in the substantial time and cost savings achieved for initial installation, retrofitting, converting and maintaining systems as well as significantly reducing hardware outlay.

The safety monitor makes the AS interface into a safety bus. It monitors communication between the slaves and the master. The safety monitor shuts down up to 16 enable circuits as soon as it detects that a safety slave has switched or identifies a fault. A safety-oriented system can be built up by installing a safety monitor and corresponding slaves in an existing AS interface system.

The safety-oriented application is created using the ASIMON program and loaded into the monitor. Programming is carried out by means of simple drag and drop.

AS interface - from under one roof
All plastic-enclosed safety switches are available in the Safety at Work configuration and other products from the switch range are constantly being equipped with this functionality. With the SHS3, BERNSTEIN offers the first safety hinge switch with AS interface capabilities on the market. Integrated AS interfaces ensure BERNSTEIN components are designed with the smallest possible dimensions. For instance, the mini limit switch Ti2 is the only switch in its class on the market with AS interface capabilities. The safety switch with interlock (SLK) is, of course, also equipped with an AS interface. In addition to switches, gateway masters and terminal boxes, the BERNSTEIN product range also includes power supply units, safety monitors, hand-held programming units as well as an extensive assortment of accessories. The entire comprehensive spectrum makes it possible to offer complete systems solutions.

Master with gateways to following bus systems are available:

- Profibus
- Profinet
- Ethernet
- Powerlink
- EtherCat
- CanOpen
- DeviceNet
- Modbus
- Allen-Bradley ControILogix

Quick-Connect Technology

Direct connection of AS interface shaped cable to BERNSTEIN AS interface switch.

The combination of the AS interface cable with ribbon cable terminals and M12 connecting lines guarantees enormous time-saving potentials in installation and connection.

This principle is supported by the direct connection technology of BERNSTEIN AS interface switches. These BERNSTEIN AS interface switches are connected directly to the AS interface cable by means of integrated ribbon cable terminals.

The use of the AS interface cable together with piercing technology ensures the ribbon cable terminal can be easily repositioned while retaining the cable's protection class.

Installation advantages

- Reduced installation time
- Easy installation thanks to piercing technology (in ribbon cables protected against polarity reversal)
- Safety circuits can be retrofitted and converted by simply plugging in individual slaves
- Changes to safety systems can be quickly implemented by way of software
- Reduced cable requirements, consequently:
- Small trailing cables
- Small cable platforms
- Easy to clean
- Low fire load
- No terminal boxes
- No need to prepare enclosures, terminals and screw connections

Planning advantages

- Straightforward planning - intricate wiring documents are replaced by clearly arranged bus structure diagrams
- Safety functions quickly created by drag and drop in ASIMON
- Printout of safety configuration from programming tool

System advantages

- Uncomplicated interconnection of safety systems in machines used in production lines
- Straightforward implementation of safety system cascading
- Faults in the safety system can be diagnosed with a laptop online
- Diagnostic facilities directly at the master and monitor for exact fault location
- System data / polling can be read out via higher-level bus system: Remote servicing
- Fewer I/Os at controller
- Takes up less space in control cabinet

Economic advantages

- Reduced costs through:
- Significant reduction in cables
- Faster installation
- Fewer circuit diagrams need to be created
- Faster commissioning
- Fast troubleshooting
- Extensive diagnostic facilities

User advantages through reduced:

- Machine downtimes thanks to extensive diagnosis and fast troubleshooting
- Commissioning costs
- Maintenance and servicing expenditure

Further advantages

- Direct connection - no need for M12 connection cable and connection adapters
- Great degrees of freedom in terms of network typology
- Tough even in harsh working environments
- Modularity and perfect integration in higher-level bus systems - an AS interface master can be integrated as a normal slave in a higher-level bus system

Technical data (for all saves, except coupling box)

Electrical data					
Voltage range	U	26.6 ... 31.6 V; via AS interface with polarity reversal pprotection			
Power intake	1	$<30 \mathrm{~mA}$			
AS interface specification		Profile S-0.B			
		IO-Code: IO-Code1:	$\begin{aligned} & 0 \times 0 \\ & 0 \times F \end{aligned}$	ID-Code: ID-Code2:	$\begin{aligned} & 0 \times B \\ & 0 \times E \end{aligned}$
AS interface inputs		Contact 1:	Data or dyn	D1 = static de transfer	
		Contact 2:	Data or dyn	D3 = static de transfer	
Parameter bits		No function			
Mechanical data					
Display		LEDs for indicating status of ASI slave and bus			
Contact type		2 NC (Slow-action contact, Zb)			
Type of connection		Connector M12 male			
Plug assignment 1		1: AS-i + 2: free			
		3: AS-i - 4: fre			
Installation position		Any			
Protection class		IP65 conforming to EN 60529; DIN VDE 0470 T1			
Performance Level					
PL		Up to e			
Standards					
VDE 0660 T100, DIN EN 60947-1, IEC 60947-1 VDE 0660 T200, DIN EN 60947-5-1, IEC 60947-5-1 EN 50295, EN ISO 13849-1					

AS Interface - Safety at Work

AS-i Slaves

Contactless safety sensors

Transponder technology

	MAK 52 Sensor 6073200068 AS-i MAK 52 Actuator 6402052307 TK-52-CD/2	- Safety slave - Low coded according to ISO 14119 - Switching status indicator - AS-i status display - Suitable for concealed installation - Suitable for harsh environments - Non-contact operation gives superior life expectancy	
	MAK 42 Sensor 6073200067 AS-i MAK 42 Actuator 6402042053 TK-42-CD/2	- Safety slave - Low coded according to ISO 14119 - Switching status indicator - AS-i status display - Suitable for concealed installation - Suitable for harsh environments - Non-contact operation gives superior life expectancy	
	MAK 53 Sensor 6073200091 AS-i MAK 53 6073200092 AS-i MAK 53 ST Actuator 6402043064 TK-43-CD/2 (plastic) 6408043065 TN-43-CD/2 (stainless steel)	- Safety slave - Low coded according to ISO 14119 - Switching status indicator - AS-i status display - Suitable for concealed installation - Suitable for harsh environments - Non-contact operation gives superior life expectancy	

AS-i Slaves

AS Interface - Safety at Work

AS-i Slaves

Position safety switches		Type 1 according to ISO 14119	
	Ti2 6073403020 AS-i Ti2 Hw 6073403035 AS-i Ti2 HwD 6073402019 AS-i Ti2 Riw 6073402034 AS-i Ti2 Riw D 6073401018 AS-iTi2 w 6073401033 AS-i Ti2 w D	- Safety slave - Smallest switch with integrated AS Safety at Work interface - AS-i status display - Betätiger des Standardprogramms erhältlich - Plastic housing - Fixing measures according to DIN EN 50047	
	188 6073303017 AS-i 88 Hw 6073303032 AS-il 88 Hw D 6073302016 AS-i 188 RiwK 6073302031 AS-i 188 RiwK D 6073301015 AS-i I88 w 6073301030 AS-i I 88 w D	- Safety slave - Switch design according to industry standard DIN EN 50047 - AS-i status display - Actuator of the standard program available - Plastic housing	
	Bi2 6073201052 AS-i Bi2 w 6073201051 AS-i Bi2 w D	- Safety slave - Side-positionned M12 connection - AS-i status display - Actuator of the standard program available - Plastic housing	
	ENK 6073501023 AS-i ENK iw 6073501036 AS-i ENK iw D 6073502024 AS-i ENK Riw 6073502037 AS-i ENK Riw D	- Safety slave - AS-i status display - Actuator of the standard program available - Especially robust switch design - Fixing measures according to DIN EN 50041	
Foot switches			
	F1 6073700076 AS-i F1 UN	- Safety slave - Protective shroud UN - M12 connection - Other types on request	
	F1 (enabling function) $\begin{array}{ll}6073700085 & \text { F1-ASI-ZSD UN } \\ 6073700086 & \text { F1-ASI-ZSDR UN }\end{array}$	- Safety slave - Enabling function - Pressure point D - Latching R (optional) - Protective shroud UN - M12 connection - Other types on request	

Emergency stop switches and control elements

Emergency stop buttons, illuminated pushbuttons and indicator lamps are available in the new, elegant housing. The housing is specially designed for
40 mm profile rails and features a special assembly concept. It can also be used outside the profile rails of course. Start, enable and request buttons can also be connected decentrally to the AS-i system with the control elements. The status of the process can be displayed by the illuminated pushbuttons. With these AS-i solutions, the necessary functions can be placed exactly where they are needed.

Press button / Signal lamp

Control element
6073100075
AS-i CONTROL ELEMENT

AS Interface - Safety at Work

Master / Safety Monitor / Power Supply Unit

Software + USB cable

6073800079

AS-i PROG SOFTWARE

6073100078
USB CA. F. AS-i BASIS MONITOR

ASIMON for programming the safety monitor

- AS-i Control Tool for addressing, diagnostic and testing of the AS-i bus system
- USB cable for connecting the basis monitor to the computer

Hand-held programming device

6073100005
Addressing / Programming up to 62 slaves max

- Display of all existing slaves in the bus system
- Reading and writing of slave datas
- LCD Display
- Rechargeable battery integrated
- Charging device is included in delivery

AS Interface - Safety at Work

Accessories

Cable bridge 2

6073900047

AS-i CABLE BRIDGE

- Branch for AS-i profile cable
- The connection under the cables is effected when opening the cover

Connecting cable 5

Connecting cable

EX

EX-approved products for potentially explosive atmospheres

- Exe, Exia and Ex e/ia terminal boxes made from polyester and aluminium
- Exd / Ex tb limit switches, rope pull switches and foot switches
- Ex mb / Ex tb magnetic switches
- Ex ib inductive Namur sensors

Services, training, system solutions, project- and customer-specific solutions.

Terminal enclosures and empty enclosures

Only materials that correspond to the temperature range required for Ex enclosures are used in these enclosures and components.

The minimum type of protection rating of all enclosures and screw connections is IP64, other protection classes available on request.

The latching devices on the enclosures are available as captive screw connections.
Various CA versions are available with flange plates.
All built-in components must conform to the relevant approvals.

Momentary contact, cable pull and foot switches
An Ex d-certified switching element lies at the core of these Ex-approved switches.

It is mounted in the corresponding switch enclosures. The mechanical actuator and its installation are certified separately.
The approval of additional actuators and switch enclosures from other series is possible on request.

All switches and momentary contact switches feature one NO contact and one NC contact.

Magnetic switches, inductive Namur sensors

For magnetic switches, protection against ignition energy is achieved by encapsulation. For Inductive Namur sensors, protection is achieved by the principle of intrinsic safety. Magnetic switches and Namur sensors have a Factory fitted connection cable.
This cable is permanently attached to the body and forms part of the approval.

All sensors are certified for a surface temperature of $+80^{\circ} \mathrm{C}$.

Services offered by the BERNSTEIN-EX experts:

- Approval of a stainless steel enclosure with freely definable dimensions
- Approvals assistance for plant operators
- Approval of switching and control elements in all enclosures
- Approval of plug-in devices in all enclosures
- Component mounting and wiring of enclosures according to customer specifications
- Training courses for planners and plant operators
- Cross-product system solutions
- Customer-specific development and project management on request
- TR (EAC) and NEC (North America) approvals on request
- Approval according to IEC Ex on request

Explosion protection at a glance
BERNSTEIN

Ex	II2G	Ex	ia	IIC	T6	TÜV	2008	ATEX	1234	-
Type approval to directive RL 2014/34/EU	Application	Explosion protection	Type of protection	Device group	Temperature class	Inspection authority	Year	As per directive 2014/34/EU	Consecutive number	Additional conditions
Protection Concept										
Symbol		Type of protection							Standards	
[为]	$E x$ "d"	Flameproof encapsulation Switching devices, motors, transformers etc. IEC60079-1							IEC / EN 60079-1	
4	$E x " p$ "	Pressurised encapsulation Control cabinets $\mathrm{px}=$ Use in Zone 1, 2 py = Use in Zone 1, 2 $\mathrm{pb}=$ Use in Zone 21, 22 pz = Use in Zone 2 pc = Use in Zone 22							IEC / EN 60079-2	
¢滋	$E x$ "q"	Powder-filled encapsulation Transformers, capacitors							IEC / EN 60079-5	
5	Ex"o"	Oil immersion encapsulation Transformers, load resistors							IEC / EN 60079-6	
	$E x$ "e"	Increased safety Terminal boxes, control cabinets, enclosures for installing devices of other protection class							IEC / EN 60079-7	
	Ex"i"	Intrinsically safe Terminal boxes, control cabinets, sensors, measurement and control equipment $\mathrm{ia}=\text { Use in Zone 0, 1, 2, 20, 21, } 22$ $\mathrm{ib}=$ Use in Zone 1, 2, 21, 22							IEC / EN 60079-11	
		Intrinsically safe systems							IEC / EN 60079-25	
	$E x$ "n"	Non sparking Systems that, due to their design, cannot spark							IEC / EN 60079-15	
\boxed{L}	Ex"m"	Encapsulation Command and signalling devices, sensors, display/indicator devices $\mathrm{ma}=$ Use in Zone 0, 1, 2, 20, 21, 22 $\mathrm{mb}=$ Use in Zone 1, 2, 21, 22							IEC / EN 60079-18	
	Ex"op"	Optical radiation op is = Intrinsically safe optical radiation op pr = Protected optical radiation op sh $=$ Shutdown optical radiation							IEC / EN 60079-28	
	Ex „t"	Protection by enclosure Switching devices, Terminal boxes, control cabinets $\mathrm{ta}=$ Use in Zone 20, 21, 22 $\mathrm{tb}=$ Use in Zone 21, 22 tc = Use in Zone 22							IEC / EN 60079-31	
IP Protection Classes										
IP 1st digit	Contact		Foreign bodies		IP 2nd digit	Water		Max. permissible surface temperature Temperature classes for gases		
0	No protection		No protection		0	No protection		450°		T1
1	Large body parts		Solid object > 50 mm		1	Water dripping vertically		300°		T2
2	Finger		Solid object > 12.5 mm		2	Water dripping at angle up to 15°		200°		T3
3	Tool > 2.5 mm		Solid object $>2.5 \mathrm{~mm}$		3	Water sprayed at an angle up to 60°		135°		T4
4	Tool $>1 \mathrm{~mm}$		Solid object > 1 mm		4	Spayed water 360°		100°		T5
5	Complete protection		Dust accumulation		5	Hose water 360°		85°		T6
6	Complete pr	ction	Dust infiltration		6	Strong hose water 360°		Explosion groups for gases		
					7	Temporary submersion		Group	Typical gas	Ignition energy
					8	Submersio		1	Methane	$280 \mu \mathrm{~J}$
Device group I Mining								IIA	Propane	> $180 \mu \mathrm{~J}$
IM1	Safety provided by 2 safety measures, 2 faults							IIB	Ethylene	$60 . .180 \mu \mathrm{~J}$
IM2	Shutdown on occurrence of explosive atmosphere							IIC	Hydrogen	$<60 \mu \mathrm{~J}$
Device group II All potentially explosive atmospheres except mining								Explosion groups for dusts		
II 1	Zone 0	Zone 20	Safety provided by 2 safety measures, 2 faults					Group	Dust	
112	Zone 1	Zone 21	Safety in the event of frequent equipment malfunctions, 1 fault					IIIA	combustible flyings	
	Zone 2	Zone 22	Safety in trouble-free operation					IIIB	non-conductive dust	
								IIIC	conductive d	
Zone categories, device group II								Additional conditions		
Hazard			Gas as per IEC / EN		Dust as per IEC / EN			-	No restriction	
permanent or frequent			Zone 0		Zone 20			X	Special conditions	
occasional			Zone 1		Zone 21					
rare, temporary no longer than 30 min per year			Zone 2		Zone 22			U	Component certification Parts certification	

EX Products

EX versions of BERNSTEIN switches with EX approval are available for applications involving potentially gas and dust explosive atmospheres.

Approvals for gas "ii G" and dust "ii $D^{\prime \prime}$ in accordance with DIN EN 60079-XX

Make use of our Ex protection expertise for your applications.

Technical data	EEX	GC, ENM2	SD	F			
Electrical data							
Rated insulation voltage $\quad U_{i}$ max.	250 V	250 V	250 V	250 V			
Rated operating voltage $\quad U_{e}$ max.	230 VAC	230 V AC	230 V AC	230 VAC			
Conventional thermal current $\mathrm{I}_{\text {the }}$	5 A	5 A	5 A	5 A			
Utilisation category: switching capacity	AC $15,240 \mathrm{~V} / 3 \mathrm{~A} ;$ DC $13,250 \mathrm{~V} / 0.27 \mathrm{~A}$	AC 15, 240V/3 A; DC $13,250 \mathrm{~V} / 0.27 \mathrm{~A}$	AC 15, $240 \mathrm{~V} / 3$ A; DC 13, 250 V / 0.27 A	AC 15, 240 V / 3 A; DC 13, $250 \mathrm{~V} / 0.27 \mathrm{~A}$			
Mechanical data							
Mechanical switching frequency	max. 120/min.	max. 50/min.	max. 50/min.	max. 50/min.			
Mechanical service life	2×10^{6} switching cycles						
Contact type	$1 \mathrm{NC} / 1$ NO contact (Zb)	1 NC /1 NO contact (Zb)	$1 \mathrm{NC} / 1$ NO contact (Zb)	$2 \mathrm{NC} / 2 \mathrm{NO}$ contact (Zb)			
B10d	4 mill.	4 mill.	4 mill.	4 mill.			
Short-circuit protection	Fuse 4 A gG (Human protection function)	Fuse 4 A gG (Human protection function)	Fuse 6 A gG	Fuse 4 A gG (Human protection function)			
Protection class	II, Insulated	II, Insulated	II, Insulated	II, Insulated			
Field of application	112 G (GAS) / II 2D (DUST)	II 2G (GAS) / \\| 2D (DUST)	II 2G (GAS) / \\| 2D (DUST)	\\| 2G (GAS) / \| 2D (DUST)			
Admissible ambient temperature	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$						
Protection class of built-in snap-action switch	IP66/ IP67 conforming to IEC/EN 60529	IP66 / IP67 conforming to IEC/EN 60529	IP66/ IP67 conforming to IEC/EN 60529	IP66 / IP67 conforming to IEC/EN 60529			
Type of connection	Control line (with ferrules)						
Conductor cross sections	$4 \times 0,75 \mathrm{~mm}^{2}$						
Enclosure	PEI	Aluminium pressure die-casting	Aluminium pressure die-casting	Aluminium pressure die-casting			
Cable entry	Cast	1 x cable screw connection M20 x 1,5	$1 \times$ cable screw connection M $20 \times 1,5$	$\begin{aligned} & 1 \times \text { cable screw connection } \\ & \text { M20 } \times 1,5 \end{aligned}$			

Technical data		SN2	SI2 U2Z AW	SI2 U2Z AK	
Electrical data					
Rated insulation voltage	U_{i} max.	400 V AC	400 V AC	400 V AC	
Rated operating voltage	$U_{\text {e }}$ max.	240 V	240 V	240 V	
Conventional thermal current		10 A	10 A	10 A	
Utilisation category: Switching capacity		AC 15, $\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 240 \mathrm{~V} / 3 \mathrm{~A}$	AC 15, Ue $/ \mathrm{l}$ e $240 \mathrm{~V} / 3 \mathrm{~A}$	AC 15, $\mathrm{U}_{\mathrm{e}} / \mathrm{I} \mathrm{e} 240 \mathrm{~V} / 3 \mathrm{~A}$	
Mechanical data					
Mechanical Switching frequen		$\leq 60 / \mathrm{min}$.	$\leq 10 / \mathrm{min}$.	$\leq 10 / \mathrm{min}$.	
Mechanical service life		10×10^{6} switching cycles	2×10^{6} switching cycles	2×10^{6} switching cycles	
Actuation		Spindle-mounted lever (Zn-Al), Roller (thermoplastic)	Roller lever (St)	Lever (St)	
Ambient temperature		$-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$	
Contact type		1 NC/1 NO contact	$2 \mathrm{NC} / 2 \mathrm{NO}$ contact (Zb)	$2 \mathrm{NC} / 2 \mathrm{NO}$ contact (Zb)	
B10d		20 mill.	4 mill.	4 mill.	
Short-circuit protection		Fuse $2 \mathrm{AgL/gG}$	Fuse $10 \mathrm{AgL/gG}$	Fuse $10 \mathrm{AgL/gG}$	
Protection class		1	I	1	
Field of application		II 2D (DUST)	II 2D (DUST)	II 2D (DUST)	
Surface temperature T		$85^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	
Protection class		IP65 conforming to IEC/EN 60529	IP65 conforming to IEC/EN 60529	IP65 conforming to IEC/EN 60529	
Type of connection		Contact screws	Screw connections	Screw connections	
Conductor cross sections		Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$	Single-wire $0.5-1.5 \mathrm{~mm}^{2}$ or Stranded wire with ferrule $0.5-1.5 \mathrm{~mm}^{2}$	
Enclosure		Aluminium pressure die-casting	Cast iron	Cast iron	
Cable entry		$3 \times \mathrm{M} 20 \times 1.5$	$3 \times \mathrm{M} 20 \times 1.5$	$3 \times \mathrm{M} 20 \times 1.5$	
Standards					
VDE 0660 T100, DIN EN 60947-1, IEC 60947-1 VDE 0660 T200, DIN EN 60947-5-1, IEC 60947-5-1 EN 60079-0, DIN EN 60079-0 EN 60079-1, DIN EN 60079-1 EN 60079-31, DIN EN 60079-31 Directive 2014/34/EU					

EX Products

5 meter connection cable

9 meter connection cable

EX certification

Certificates

\&x II 2G Ex db IIC T6 Gb II 2D Ex tb IIIC $780^{\circ} \mathrm{C} \mathrm{Db}$

TÜV 03 ATEX 2021X

EEX RH

6090148024
EEX-SU1Z RH -5M-

[^5]
TÜV 03 ATEX 2021X

EX Products

ENM2 IW

EX Products

EX Products

	GC AHT	SD
2 meter connection cable	6092185032 GC-SU1Z EX AHT -2M-	
5 meter connection cable	6092185034 GC-SU1Z EX AHT -5M-	6091100004 SD-SU1 EX -5M-
9 meter connection cable	6092185035 GC-SU1Z EX AHT -9M-	6091100005 SD-SU1 EX -9M-
EX certification	II 2G Ex db IIC T6 Gb II 2 D Ex tb IIIC $\mathrm{T} 80^{\circ} \mathrm{CDb}$	II 2G Ex db IIC T6 Gb II 2 D Ex tb IIIC $\mathrm{T} 80^{\circ} \mathrm{C} \mathrm{Db}$
Certificates	TÜV 03 ATEX 2043X	TÜV 03 ATEX 2043X

EX Products

F2 UN F2

6096198022

F2-SU1Z/SU1Z EX -2M-

5 meter connection cable

6096197029

F2-SU1Z/SU1Z EX UN -5M-

9 meter connection cable

EX certification

II 2G Ex db IIC T6 Gb
II 2 D Ex tb IIIC $\mathrm{T} 80^{\circ} \mathrm{CDb}$

TÜV 03 ATEX 2043X

2G Ex db IIC 16 Gb II $2 \mathrm{D} \mathrm{Ex} \mathrm{tb} \| I \mathrm{CT} 80^{\circ} \mathrm{CDb}$

Explosion-protected metal-enclosed switch SN2

1 NC /1 NO contact

2 NC / 2 NO contacts

Series SI2

EX certification

Certificates

(S) BERNSTEIN

Contact

International Headquarters BERNSTEIN AG
Hans-Bernstein-Str. 1
32457 Porta Westfalica
Phone + 49571 793-0
Fax + 49571 793-555 info@de.bernstein.eu www.bernstein.eu

Denmark

BERNSTEIN A/S
Phone +45 70200522
Fax + 4570200177 info@dk.bernstein.eu

France

BERNSTEIN S.A.R.L.
Phone + 33164663250
Fax + 33164661002
info@fr.bernstein.eu

Italy
BERNSTEIN S.r.l.
Phone + 390354549037
Fax + 390354549647
info@it.bernstein.eu
United Kingdom
BERNSTEIN Ltd
Phone + 441922744999
Fax + 441922457555
info@uk.bernstein.eu

Austria
BERNSTEIN GmbH
Phone + 432256 62070-0
Fax + 43225662618 info@at.bernstein.eu

Switzerland BERNSTEIN (Schweiz) AG
Phone + 4144775 71-71
Fax +4144775 71-72
info@ch.bernstein.eu

Hungary

BERNSTEIN Kft.
Phone +36 14342295
Fax +36 14342299
info@hu.bernstein.eu

China
BERNSTEIN Safe Solutions
(Taicang) Co., Ltd.
Phone + 8651281608180
Fax +8651281608181
info@bernstein-safesolutions.cn

[^0]: ${ }^{2)}$ Please refer to the following pages in the catalogue to establish which switching system can be used in the switch groups.

[^1]: Approvals: (16) © DGuv
 (CC)

[^2]: Setting point freely selectable in range from $0^{\circ} \ldots 270^{\circ}$ and $0^{\circ} \ldots 180^{\circ}$

 Tolerances:
 Switching angle (opening) $\pm 1.5^{\circ}$
 Positive opening torque 10%
 Positive opening angle $\pm 1.5^{\circ}$

[^3]: *Must be taught in with 6075989056 (CSMS SLAVE TEACHADAPTER) for the master.

[^4]: (1) Depending on switching system. See Table on Pages $72-75$

[^5]: II 2G Ex db IIC T6 Gb
 II 2D Ex tb IIIC $780^{\circ} \mathrm{C} \mathrm{Db}$

